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Introduction

This document describes industry-proven tools that can be used to meet the
requirements specified in D1-9000, Advanced Quality System (AQS). Unless
specifically referenced in D1-9000, sections 1 or 2, this document contains no
requirements. This document describes methods that are the most common
solutions to D1-9000 requirements. However, this toolbox is not intended to be
either comprehensive or exclusive in nature. Other tools may be used provided
they meet the intent and requirements of D1-9000.

The glossary at the back of this document provides additional useful information
about AQS tools.

What is AQS?

AQS is a product and process improvement system used in design, production,
and testing, as well as in research and business processes.

AQS improves quality by systematically improving products, solving problems, and
reducing variation through process understanding. This quality improvement is
accomplished through the use of sound problem-solving, statistical, engineering,
business, and scientific methods.

D1-9000 contains Boeing quality requirements for its suppliers. These require-
ments consist of a Basic Quality System (BQS), based on ISO 9002, and an
Advanced Quality System (AQS).

AQS provides producers with a means to enhance quality based upon sound
principles of
* Management.
» Engineering.
o Statistics.
The goal of AQS is continuous, permanent quality improvement to
* Improve product quality.
* Reduce waste.
» Exceed customer expectations.
* Prevent defects.
» Improve and sustain profit margins.
* Reduce cycle time.
* Reduce costs.

AQS offers tools that will

Identify improvement opportunities.

* Improve product design.

Enable development of reliable and efficient processes.
* Reduce variation.

* Improve products and processes.

Solve problems.
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AQS is intended to be used in
 Design.
» Production.
» Business processes.
» Research.

To successfully implement AQS and capitalize on the improvement potential it
offers requires strong, involved executives who create the expectation of a continu-
ous improvement environment.

The principal elements of the AQS improvement process are in the high-level AQS
flow diagram as shown below.

Product, process,
and problem
analysis Learned

\—l—/

Y
Determine key
characteristics

\—l—/

Y
Provide evidence
of variation

Lessons

Establish controls
for key sources
of variation

Are key
characteristics
in control and

Identify sources
of variation

capable? N
Key characteristics Continuous
meet minimum
Improvement

requirements

The tools in this document are presented in an order generally following the above
AQS flow and the more detailed AQS flow, beginning with the identification of key
characteristics as shown in D1-9000, figure 2.1, and the figure on the

next page.

In order to apply the AQS process and tools effectively, it is important to under-
stand the purpose and approach of AQS. The tools and methods bring about
improvement only when well understood and properly applied.

Comment:

AQS and the AQS tools are not just to be applied to hardware, but also to business
processes; not just to variation reduction, but also to variation management, prob-
lem identification and problem solving; not just to quality control, but also to product
improvement and process improvement.
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AQS Tool Used for These Tasks

Product, process, and |+ Preproduction planning

problem analysis * |dentifying and prioritizing improvement opportunities

» Understanding processes

« Identifying candidate key characteristics

» Problem solving and root-cause analysis

* Performing variation/tolerance analysis

« Establishing, measuring and evaluating standard processes
» Understanding customer requirements

Teams » Teams should be used
(usually cross-  During problem-solving activities.
functional) ¢ Throughout the AQS process.

» Some tools are most effective when done in a team environment,
particularly for brainstorming, risk analysis, cause and effect diagrams,
structure-tree diagrams, process flowcharts, designed experiments,
key characteristic flowdown, and product, process, and problem analysis.

Brainstorming  Generating ideas from a group

« Establishing key characteristics

« Identifying sources of variation

» Problem solving and root-cause analysis

Cause and effect « Identifying causes of problems

diagrams and structure- | « Flowing down key characteristics

tree diagrams « ldentifying sources of variation

Check sheet and » Gathering data to detect patterns in processes

defect concentration » Generating Pareto charts, attribute control charts, or histograms
diagram » Gathering data to identify target improvement areas

Pareto analysis » Ranking problems, mishaps, and so on, by relative importance

« Displaying relative importance of each candidate key characteristic

« lllustrating rejection history when collecting data on key characteristics

 Problem solving

Key characteristics « Identifying features critical to assembly, performance, and service life where
variation causes significant loss

* Reducing variation in features that cause the most loss

» Choosing where to focus efforts and resources

Risk analysis « ldentifying key characteristics from a list of several potential
key characteristics

« Identifying potential design, manufacturing, or quality problems for a product

3-Dimensional « Identifying key charateristics
statistical variation « Allocating tolerances
analysis  Evaluating detail part tolerances, process capabilities, assembly
sequence, tooling and measurement variation

Key characteristic « Identifying lower level key characteristics in an installation, assembly,
flowdown detail, or process

* |dentifying sources of variation affecting end-item key characteristics
AQS control plan » Documenting relevant AQS information for parts and processes (e.g., key

characteristics, control, capability, gage variation, and process variation)
« Establishing a basis for a process database that can be used for
preproduction planning
» As a management tool to evaluate and prioritize processes
for improvement
Process flowchart » Determining where key characteristics will be measured
* Identifying potential sources of variation
 Describing how a process works
Run chart * Plotting subgroup averages or individual measurements
« Displaying the time history of measurements
« Displaying off-target situations and trends prior to control limit calculations

D1-9000-1
6




AQS Tool Used for These Tasks

Tier chart

Plotting all subgroup measurements on one chart
Displaying which subgroups, if any, have measurements outside the

specification limits

Displaying the spread in subgroup measurements and differences

between subgroups

Group chart

Plotting data from multiple process streams (e.g., spindles, machines,

operators) over time

Plotting measurements taken at several locations on a part over time
Displaying the time history of measurements for multiple process

streams or locations

Identifying process streams or locations that, over time, exhibit
nonrandom behavior (e.g., are always high or low)

Location chart

Plotting measurements made at several locations on a part on one chart
Comparing process measurements across locations
Identifying locations having production/process problems

Control charts

Identifying when a process changes

Monitoring variation of a key characteristic

Monitoring variation of any quality characteristics or key process parameters
Monitoring and managing processes on the shop floor

Distinguishing what type of variation (special or common cause) is at work
Discovering processes heading for trouble before defects are made

Reducing variation

Estimating how much to adjust a process to place it on target/nominal

Histogram

lllustrating the distribution of process and key characteristic

measurements

Graphically illustrating the capability of a key characteristic or process
to meet engineering specifications

Capability analysis
(Cp and Cpk)

Determining the ability of a process to meet engineering specifications
Determining whether customer requirements are met

Estimating the number of nhonconformities that potentially can be produced
Determining which tools, equipment, and processes are required to meet

minimum requirements

Setting parameters for engineering tolerances

Gage variation study

Evaluating the measurement system, including operator usage
Determining measurement device capability
Determining percent of engineering tolerance consumed by the

measurement system

Scatter diagram

Studying the possible relationship between one variable and another

Design of experiments

Studying how changes in process or design factors impact

key characteristics in order to improve current and future designs,
manufacturablility, and process improvement

Improving product design, increasing robustness

Identifying cause-and-effect relationships in a process

Feedback of data and
information

Using process capability data for tolerance allocation during design (VSA)
Providing process capability information back to engineering

and manufacturing

Predicting whether new parts can be manufactured to the engineering
requirements using existing equipment

Deciding which machines or processes yield the best quality within
economic constraints (using existing processes/equipment).

Hardware variability
control (HVC)

Designing products to reduce the impact of variation.
Understanding customer requirements and identifying key characteristics,

and flowing them down.

Ensuring the design matches the way the product will be built.
Ensuring product datums match the way the part is used in the next higher

level build position.

Ensuring part tolerances are set to match the capabilities of the producing

process
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1.0 Product, Process, and
Problem Analysis

AQS focuses on identifying improvement opportunities, reducing variation, improv-
ing products and processes, improving product design, solving problems, and
implementing reliable and efficient processes. Identifying product key characteris-
tics and understanding the processes used in producing key characteristics is an
important element in reducing variation and improving product quality.

Before key characteristics are determined, a thorough analysis of the product and
the associated manufacturing processes should be performed using the tools
described in this document. Some of the tools typically used include team brain-
storming, flowcharting the manufacturing process, collecting production data (e.g.,
defects, scrap, rework, and waste), collecting engineering information (e.g., specifi-
cations), and performing a risk analysis.

In addition, the tools can be used to analyze and solve problems and improve
processes and products. For example, monitoring processes with Run charts and
performing Pareto analyses of defects, scrap, rework, and waste can highlight
specific problem areas where limited quality improvement resources can be
focused effectively. Furthermore, the problem analyses can help identify whether
guality problems are caused by process breakdowns (e.g., mismarked parts) or are
due to excess variation. Many of the problem analysis tools can be used to reduce
or eliminate quality flaws, while the remainder of the AQS process flow addresses
variation reduction on key characteristics.

Figure 1.0.1 illustrates the major elements of the Product, Process, and Problem Analysis
phase—The problem analysis tools by their very nature are also to be integrated
throughout the variation reduction and continuous improvement steps of the AQS process
flow. Since every problem is unique, the situation will dictate the appropriate tools to use.

@ﬂﬂf]ﬂﬁ
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What:

» This is the first step in the AQS flow. It consists of the analysis of the prod-
ucts, processes, and problems relating to continuous quality improvement.

» The up front work, thinking, and analysis prior to defining key characteristics.

The beginning of the continuous improvement loop after going through the
AQS process flow.

It is data driven — it requires data collection, measurement, and analysis.

The identification of candidate top-level key characteristics from customer
requirements.

» The examination of the paperwork processes associated with the design,
production, and delivery of the product.

» The application of AQS tools and philosophy before implementing SPC.
» The application of a wide variety of analytical and statistical tools.

Why:

» To understand the design, engineering, manufacturing, and business pro-
cesses and their interrelationships as they affect quality.

« To prioritize activities related to product and process quality improvement.
 To provide the basis for product and process improvement planning.
» To ensure that beneficial key characteristics are chosen.
» To ensure resources are placed where maximum benefits will be achieved.
 To establish a solid foundation for product measurement and control.
» To make well-founded recommendations regarding improvement.
» To examine the relationships between products and their build processes.
 To develop robust product designs.

To select the right things to do and to facilitate doing the right things well.

To identify solutions to problems that are not solved by key characteristics or
SPC.

When:

» Boeing requires D1-9000 to be applied to purchased products.
The producer needs to reduce product or process variation.

» A problem with a part, product, or process is identified.

A product or process improvement is needed or desired.

New products are designed.

» Continuous improvement is desired.

The R&D phases are occurring.

Evaluating product capability and customer satisfaction.

How:

Step 1: Identify the motivation and objective

In performing the Product, Process, and Problem Analysis (fig. 1.0.1), the producer
should first identify the motivation and then identify the objective.




@ﬂﬂf]ﬂﬂ

Product, Process, and Problem Analysis

Motivation
) B C D E
Boeing (customer) A problem with a A process A product quality New product
requires variation part, product, or improvement is improvement is is to be
reduction to be process is identified needed or desired needed or desired designed
applied to product
L | | | |
v
< State objectives > Step 1
¥

Typical Analysis Tools
(not all inclusive)

* Pareto charts * Design/build tree ¢ Standard process Step 2
® Process flowcharts correspondence implementation and
¢ Value analysis ¢ Location/group charts evaluation
¢ Teaming/brainstorming e Statistically designed ¢ Risk analysis/FMEA
* Cause and effect diagrams experiments (DOE) * Measurement systems
* Part/process * Queuing theory/waiting analysis/gage R&R
relationship analysis line analysis ¢ Control charts
® Check sheets ¢ Graphical analysis of data ® Exploratory data analysis
* Run charts ¢ Baseline "as-is" analysis ® Performance measurement
e Tier charts ¢ Root-cause analysis e Stratification

¢ Robust design e Capability analysis * Tolerance analysis
e Part-family analysis
e Structure/fault-tree analysis

Analysis points to a need for
mistake proofing, or for ~ Step 3
product or process rede3|gn

Implement AQS variation- Process analysis Design anaIySIS by Analy5|s of business
reduction process by manufacturlng englneermg processes

AQS variation- [ Continuous |mprovement j

Analysis points to a
need for variation reduction

reduction flow (return to top of flow and repeat as beneficial) Step 4

Figure 1.0.1

» Motivation

» Ais pursued when there is a customer requirement to reduce the variation
in the key characteristics of a supplier’s product or process.

» B is undertaken when a specific problem is identified by the customer or
the supplier.

» C and D are continuous improvement activities that can be undertaken to
meet supplier business objectives once minimum customer requirements
are met. Of course, C and D can be undertaken simultaneously with A or
to support the solution to the problem identified in B.

» E is undertaken when a product is to be designed. Tools such as DOE
and other statistical methods can be used to evaluate alternatives, opti-
mize a design, produce a robust design, or to speed up the development
process.

» Objective

» Examples of objectives might be to reduce rework to 20% of current levels, to
reduce customer rejections by 9%, to increase yield by 50%, to identify the
root cause of a product problem, or to evaluate alternative designs. D1-9000-1
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Step 2: Select tools for analysis

After identifying the objective(s) to be undertaken, select the appropriate tools and
integrate their use in accomplishing the objective. Some of the typical tools that
have been shown to be of value are listed in figure 1.0.1. This list is not intended to
be all inclusive.

Descriptions of many of the tools mentioned are found elsewhere in this document.

The supplier should document the tools used in this phase, including the results.
The documentation should be at a level of detail that would satisfy normal business
needs.

It is not suggested or required that all these tools be used to achieve each objec-
tive. The tools selected and used are problem dependent.

Step 3: Take actions based upon analysis

It will generally be found that during the Product, Process, and Problem Analysis,
attention will be directed to

1. A need that requires variation reduction in key characteristics.

2. A problem or root cause involving process breakdowns (flaws) or involving
product design.

3. Both (1.) and (2.).

In other words, the analysis will lead to a solution requiring variation reduction and/
or fixing a process breakdown or error.

If variation reduction is needed, then the D1-9000 variation-reduction process is to
be followed. This is a straightforward process that involves (1) identifying key
characteristics of the product, (2) establishing statistical control of the key charac-
teristics, (3) calculating capability measures for key characteristics, and (4) taking
corrective action when statistical control and capability requirements are not met.

If the problem or the analysis indicates a process breakdown (e.g., a flaw or error),
then further analysis and resolution needs to be addressed by manufacturing,
engineering, or business processes. The analysis can involve many of the tools in
figure 1.0.1 and can be simple or complex. It is important that this analysis be
thoroughly performed and the solution thoroughly implemented so the problem
does not recur. The resolution may be a manufacturing or business process
change, a modification of the design of the product or, for example, a change on
the drawing or the manufacturing plan.

These problems are often solved by (1) following the existing procedure or process,
(2) revising the procedure or process, or (3) making the design or process more
robust.

» Example 1: Motivation A results from a contractual requirement. It could
involve forming a team; collecting rejection, scrap, and rework data; preparing
Pareto charts of the data; coordinating with the customer; performing a risk
analysis with an associated Pareto chart of the risk numbers; then conducting
a part-family analysis and a gage-variation study. Since Motivation A requires
that variability reduction be performed on the contracted product and key
characteristics identified, the supplier would follow the variation reduction
process as described in D1-9000, section 2.

» Example 2: Motivation E would be pursued when a new product is to be
designed. For example, statistically designed experiments (DOE) can be used
to develop a robust design; that is, a design that results in a product that has




characteristics that are less sensitive to manufacturing variation. DOE and
other statistical methods could be used to evaluate alternative designs to
improve products, parameter design or tolerance analysis.

» Example 3: Motivation B could be pursued, for example, when an important
problem surfaces (e.g., when a particular part or process has a high scrap or
rework rate, poor delivery performance, or an excessive production cycle
time). The problem may have been identified by the supplier during a process
analysis as a high-priority issue to address in order to reduce costs. It may
have also been identified by the customer as a major problem impacting
assembly or function, or the part may have failed in test or service.

Virtually all the problem-solving and statistical tools could be used to identify root
causes and improve the process. A typical approach would involve forming a cross-
functional team, defining the problem well, collecting relevant background data,
flowcharting the processes involved, performing a root-cause analysis, identifying
the most probable causes, developing a solution plan, and taking the appropriate
actions to permanently solve the problem (these actions may involve product or
process redesign, mistake proofing, SPC, DOE, and so on).

« Example 4: Objectives C and D are often identified during the continuous
improvement process. These improvement opportunities are identified through
the collection of data on waste, scrap, rework, process capability indexes (e.qg.,
Cpk), product function, customer satisfaction, and so on. The analysis is often
begun through a Pareto analysis, constructing a flowchart of the “as-is” process
involved, graphical analysis of process output data, including Run charts and
histograms, exploratory data analysis, cause-and-effect analysis, and process-
capability analysis.

Note: Any of the analytical tools such as those mentioned in figure 1.0.1 might
be used, depending upon the situation.

After the analysis, the supplier may have found the root causes to be due to exces-
sive variation, in which case the supplier would implement the AQS variation-
reduction process. Alternatively, the analysis could have shown that the problem or
cause was due to a flaw resulting from a process breakdown. Then it needs to be
decided whether the analysis and solution is tied to a manufacturing process, an
engineering process, or a business process. For example, the solution may require
mistake proofing the manufacturing process, or it may require a better design.

During this analysis the supplier may discover that both mistake proofing and
variation reduction may be needed. In that case, the supplier would then define key
characteristics of the part or process and pursue the AQS variation-reduction
process.

Step 4: Continuous improvement

After completion of the analysis and improvement steps for a chosen objective, the
improvement process returns to the top of figure 1.0.1 and a new problem, process,
or product is chosen for analysis.
Questions to ask to initiate improvement:

» Where are the biggest problems?

* What products need improvement?

» What processes need improvement?

* Where is the most waste?
Where is the most scrap and rework?

@ﬂﬂf]ﬂﬂ
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» Were the right key characteristics chosen?
» Where are our biggest delivery problems?
* Where can we gain the most benefit?

In general, the tools and approach in figure 1.0.1 can be applied to a wide variety
of improvement opportunities and problem-resolution activities.

Sample improvement opportunities:

Reducing excessive variation.

Reducing cycle time.

Reducing defects.

Improving product quality.

Reducing scrap, rework, and waste.

Reducing inventory.

Identifying and prioritizing products and processes for improvement.
Preparing for lean manufacturing.

Identifying processes needing better understanding.

Example tasks:

Perform tolerance analyses.

Examine customer requirements and relate to key characteristics.
Flowchart a process (process mapping).

Enumerate all relevant products and processes.

Ensure product designs are robust.

Ensure datums and indexes are coordinated.

Conduct Pareto analysis of areas having significant waste, scrap, rework.
Perform measurement-system evaluation studies (e.g., gage R&R).
Identify areas in need of continuous improvement.

Examine how the part or product is used — perform a “used-on” analysis.
Coordinate with the customer and suppliers.

Collect data and information (internal and external sources) to prioritize
processes and to achieve objectives.

Develop process-improvement plans.
Develop corrective action and preventive-action plans.
Form teams to evaluate potential key characteristics.
Perform part-family analysis.
Perform part-to-process analysis.
Develop flowcharts of critical subprocesses.
Examine business processes for process improvement.
Perform DOEs to improve product design or identify key characteristics.
Evaluate activities for value and benefit, for example,
» Of what benefit is a particular key characteristic or control chart?
» Does a particular control chart monitor the right type of variability?
Perform root-cause analysis of problems.
Obtain and evaluate customer feedback.




1.0.1 Problem Solving f\ moEme

What:

» Problem solving methods are systematic approaches for identifying a problem
or a needed improvement, finding the root cause of a problem, identifying and
evaluating solutions, implementing the solution, measuring the improvement,
and ensuring permanent integration of the solution so the problem will not
arise again.

Why:

 To provide a step by step procedure that can be repeatably applied to most
problems or process improvements.
To reduce the amount of time to make an improvement or solve a problem.
 To provide a structure to follow that helps ensure positive solutions.
To standardize the mechanism for improvement and problem solution.
To aid in communication and facilitate learning.

When:

* When product or process improvements are needed.

* When problems surface in all areas of design, manufacturing, and business
processes.

How:

 Various problem solving models have been proposed, but they are generally
similar and follow the usual scientific method. See figures 1.0.1.2 and 1.0.1.3
for sample problem solving flows.

Discussion:
Logical and thorough implementation of the analytic tools and methods discussed

in this document will lead to long-lasting improvements with all the associated
benefits.

Usual Versus Preferred Problem-Solving Approaches

Firefight: Contain and Comment:
Usual Problem > provide a quick fix, or -5 Problem resurfaces Increased
Method surfaces develop work-around in the future. process costs
f I remain
Comment:
c Structured Better results,
ontain ructure i lower long-
Preferred P problem and problem (IJIheclg. Act: term cos?s
Analytic | Problem | develop MHp| analysis | Collect data Hp| Institutionalize and time
Method | Surfaces short-term and and verify solution expenditure.
fix solution solution Problem does
not resurface

D1-9000-1
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Basic Problem-Solving Flow

Identify the problem

v

Study the current situation

<

Find root cause(s)

<

Choose solutions

<

Develop action plan

<

Do action plan

<

Check results

v

Establish reliable methods
and review

v

Continuously improve
products and processes

State objectives and
measures of performance

Collect information
and data

Use problem-solving tools

Identify and evaluate
possible solutions

Apply the chosen solution. Identify
control points and measurement process.

Implement chosen solution

Measure results

Modify and monitor processes to
ensure fix is permanent

Identify additional needed improvements

Figure 1.0.1.2 Basic Problem-Solving Flow

When working problems that surface, the producer should follow the preferred
problem-solving path in figure 1.0.1.1, not the usual problem-reaction approach
(fire fighting.) The primary differences between the usual approach and the pre-
ferred approach are that the preferred approach uses structured problem analysis
and there is a deliberate use of the plan-do-check-act cycle. The result is perma-
nent improvement rather than temporary containment.

The problem-solving flows shown in figures 1.0.1.2 and 1.0.1.3 are provided as
suggestions. These flows can be used for any of the motivations mentioned in
section 1.0 and should be modified to meet the particular need. The second prob-
lem-solving approach in figure 1.0.1.3 is an expanded version of figure 1.0.1.2.




Basic Problem-Solving Flow (Detailed)
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Figure 1.0.1.3 Basic Problem-Solving Flow (Detailed)

The tools presented in this document are primarily aimed at product and process
improvement and can be used in research, design, manufacturing, and business
processes. Generally, the tools emphasize and rely on the collection, analysis and
use of data to influence decisions and activities. However, there are other valuable
management and problem solving methods. These include the affinity diagram,
benchmarking, interrelationship digraph, prioritization matrices, multivoting, force
field analysis, QFD, activity network diagram, and nominal group technique.
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1.0.2 Plan-Do-Check-Act (PDCA)
Cycle

What:

The Plan-Do-Check-Act (PDCA) cycle is a systematic approach and discipline to
problem solving and continuous improvement. It is often conceptually drawn as a
wheel showing the feedback nature of the process (figure 1.0.2.1). In practice, the
steps for a process being studied are usually drawn linearly as shown in figure
1.0.2.2 and 1.0.2.3, but still follow the PDCA cycle.
Deming described the Shewhart PDCA cycle as

» Plan — A conjecture or change for improvement is planned.

» Do — Execute or test the conjecture or change (often on a small scale).

* Check — Gather and analyze data to observe the effect of the change and to
see if the change worked.

» Act — Implement the process improvement if the results are good or reassess
and try an alternative approach by repeating the cycle with the information
accumulated.

Another application is to specify and define a process to be implemented (Plan),
test or implement the process (Do), measure the process (Check), and either
institutionalize the process or reassess the process and revise (Act). Regardless,
use the feedback and make improvements.
As can be seen, the PDCA cycle has its roots in the scientific method:

» A conjecture or theory is hypothesized.

* An experiment is run or observation made.

» Data is collected and analyzed to verify or not verify the conjecture or theory.

» The theory is implemented or a new theory is hypothesized.

It is common for large problems or activities that subordinate PDCA cycles to be
embedded within the larger PDCA cycle.

\mprove
Act Plan
Implement Specify theory

Or reassess

or conjecture:
Study, analyze and
plan the process

Check Do
Measure and Carry out test
analyze the or run an
effects experiment

Figure 1.0.2.1 Plan-Do-Check-Act Cycle




The examples in figures 1.0.2.2 and 1.0.2.3 show the basic problem-solving flow
from section 1.0.1 and the high-level AQS flow with the associated PDCA steps.

Why:

» Provides a systematic method for improvement.

» Provides a common format and process that various groups in an organiza-
tion can follow.

» Ensures that all steps in a problem solving or improvement situation are
followed, resulting in valid, effective and efficient solutions.

» Brings order to often meandering problem-solving efforts.
» Provides feedback for further improvement.

When:

» Making improvements to a product or process.
* Embarking on problem-solving activities.

Basic Problem-Solving Flow

~

—p Identify the problem

¥

Study the current situation

Plan < Find root cause(s)

¥

Choose solutions

<+

Develop action plan

Do { Do action plan

¥

Check { Check results

¥

Establish reliable methods
and review

Act +

Continuously improve
products and processes

r
<+

Figure 1.0.2.2 Basic Problem-Solving Flow with PDCA Cycle
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AQS Flow
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and problem
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~—_
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Check

Are key
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Identify sources
of variation
~—

Continuous

meet minimum
requirements
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Figure 1.0.2.3 AQS Flow With PDCA Cycle




1.1 Teams

What:

» A group of individuals representing various disciplines and functions that
meets together for the purpose of problem solving or decision making.

Why:
« Teams allow the people who are the most knowledgeable about a process to
pool their skills, talents, and expertise for the improvement process.

« Communication between affected organizations is improved, more ideas can be
generated, and ultimately, decisions are of higher quality in a team environment
than when a task is undertaken by an individual.

* Members of a team are much more willing to take ownership in the resultant
decisions and to actively pursue their successful implementation.

When:

A team should be used whenever a decision, problem, or task affects more
than one person, organization, or company. The tools described in this
document are most effective when applied by teams. Examples of when to use
teams include

* Identifying improvement opportunities.
Developing new product or process designs.
» Determining key characteristics.

Identifying sources of variation.

Doing a key characteristic flowdown.

» Conducting a designed experiment.

» Performing a root-cause analysis.

How:

» Determine those organizations, disciplines, and individuals having some
involvement in the problem, process, decision, or task under consideration.

* Request representation from each of the affected groups to act as members
of the team. Provide training as necessary.

 Establish a schedule for the team meetings.

» Develop meeting agenda. Conduct team meetings. Define the problem,
establish objectives, and apply appropriate problem-solving tools such as
described in this document. Attempt to reach consensus decisions whenever
possible; the emphasis is on reaching a common goal.

Note: Problem-solving and decision-making teams often flounder because the
problem and objectives are not well defined or understood by the team.
Teams often leap to providing solutions without taking the time to define
the problem and establish the objectives.

In addition, boundaries are often not defined which would help focus
team activities and responsibilities. Issues which arise and are outside of
the boundaries should be noted and communicated to the responsible
personnel.
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1.2 Brainstorming

What:

» A technique that uses group interaction to generate ideas to solve a common

problem.

Why:

» To produce many diverse ideas in a short period of time.
To generate creative ideas.

To stimulate
To increase i

and gain ideas from various functions.
nvolvement of team members and elicit buy in.

To improve the quality of the solution.

When:

* Identifying candidate key characteristics.

Identifying problem areas and activities on a flowchart.

Identifying causes when constructing a cause and effect diagram.
Identifying customers/suppliers in a process.

Identifying improvement opportunities.

Identifying sources of variation.

How:

* Assemble a cross-functional team.

Clearly state

the problem and make sure that all team members

understand it.

Encourage team members to present their ideas one at a time. Do not hold
back any ideas, and be creative.

Record sugg
are recorded

Have the tea

Have the tea
complish the

Tooling

y

estions exactly as presented. Make no judgments until all ideas

m discuss and clarify any items or ideas in question.

m members evaluate which items are worth working on to ac-
goal.

Teamwork ,
Quality

Engineering Supplier Planning Purchasing Customer Statistician Shop

Advanced Quality requires the cooperative
effort of all involved in the design, manufacture,
assembly, and use of a product or service.

Figure 1.2.1




1.3 Cause and Effect Diagram

What :

* A tool used to graphically display the relationship between an effect (e.g., a

problem or key characteristic) and the causes that influence it.

Why:
» Helps identify lower level key characteristics and key process
parameters affecting key characteristics.
» Helps identify the various causes affecting a process problem.
» Helps a group reach a common understanding of a problem.
» Exposes gaps in existing knowledge of a problem.
» Helps reduce the incidence of uninformed decision making.

When:

» Performing key characteristic flowdown.

» Looking for all potential causes of a problem.

» Organizing brainstorming lists into causes and effects.
Identifying sources of process variation.

* Linking process output to process parameters.

» Performing a DOE.

How:

» Generate potential causes of a problem (or effect) through structured
brainstorming.

 Place the problem statement, event, or key characteristic in a box on right-

hand side of paper.
» Draw a horizontal line to the left.

» Decide upon the major cause categories of the event, problem, or
key characteristics.

Cause Effect

Material Machine

Age of chemicals Bath t t

(o] \ ath temperature \ Tank size
Geometry of part\ Chemical composition :

Base metal \ Current ripple\

N\ Plating

Anode-to-cathode ratio

Number of parts

Current density

Methods

Figure 1.3.1

Anode Configuration/ thickness
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« Write the major cause categories on the left-hand side of paper and draw lines
to them off the main horizontal line.

« When evaluating for causes, all the major potential sources should be reviewed:
machines, methods, materials, people, measurements, and environment.

 Place the brainstormed ideas under the appropriate major cause category. Add
any newly identified causes.

» For each cause, ask, “Why does it happen?” And list responses as branches off
the major cause branches.

« Continue this process to the root-cause level.
« ldentify the most influential causes and focus activities on them.

D1-9000-1
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1.4 Structure-Tree Diagram

What:

» The Structure-Tree diagram graphically represents the hierarchical relation-
ship among a group of related parts, processes, activities, key characteristics,
causes and effects, people, or most anything else. This tool is often used in
lieu of the cause and effect diagram due to its ease of understanding, flexibil-
ity, and readability.

Why:

» Helps identify key characteristics and key process parameters.
lllustrates the various causes affecting a process problem.

* Helps a team reach a common understanding of a problem or situation.
» Exposes gaps in existing knowledge of a problem or situation.

Helps reduce the incidence of uninformed decision making.

When:

» Performing key characteristic flowdown.

 Looking for all potential causes of a problem.

» Organizing brainstorming lists into a logical hierarchy.

Identifying sources of process variation.

» Breaking down an assembly into subassemblies, details, and processes.
» Problem solving; root-cause analysis.

How:

* Identify the problem, top-level part, key characteristic, or other item that would
represent the top of a hierarchy. Place in a box at the top of the page.

» During the brainstorming exercise, identify all items that either report to,
affect, or go into the highest level in the hierarchy. Second-tier items are
placed in boxes just below the top box. The process is repeated for each
second-tier box, and so on, building a hierarchical tree. Each box is con-
nected by a line to the appropriate next higher level box. The process is
continued to the lowest level needed, such as root-cause level, detail part or
process level, lowest key characteristic level, and so on.

Figure 1.4.1
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» The same information used to build the cause and effect diagram shown in
section 1.3 could be represented using a structure-tree diagram, as shown

below.
Plating
thickness
]
1 1 [ 1 1 1
Bath Current Age of Geometry Anode Number
temperature ripple chemicals of part configuration of parts
Chemical Tank Base Current Anode-to-
composition size metal density cathode ratio
1
I 1 1 I
. . Trivalent
Alloy Thickness Porosity chrome

Figure 1.4.2 Structure-Tree Diagram for Plating Thickness
* The structure-tree diagram is particularly useful during key characteristic
flowdown to depict the relationship of subassemblies and details of an assem-
bly, along with their key characteristics, as in figure 1.4.3 and 1.4.4.

Figure 1.4.3 Clock Assembly

Readability
Clock Accuracy
Voltage Power Display lllumination
supply assembly
Photo Filter LCD Backlight Panel
diode glass lamp lamp
Current [KEY> Light Component lllumination [KEY>llumination

transmission failure

D1-9000-1

28 Figure 1.4.4 Structure-Tree Diagram Showing Key Characteristic Flowdown




1.5 Counting Defects

What:

» A way of quantifying defects and nonconformities, and determining where
problems are.

Why:

» Provides data for the improvement process.
« Identifies areas to be improved first.
» Helps measure the impact of improvements.

When:

» Analyzing an existing process, part, or assembly to see whether and where it
needs improvement.

How:

« Identify the process to be studied.
» Draw a process flowchart (see sec. 1.10).
» Decide where in the process defects might occur and should be counted.

» Decide whether to use check sheets (sec. 1.5.1), defect concentration dia-
grams (sec. 1.5.2), or some other means to record the defect data.

Train the people who work in the process to collect the data.

Collect the data, making sure that observations/samples are as representa-
tive of the production process as possible.

» Analyze results and begin improvement activities in high-priority areas. Use
Pareto charts (sec. 1.6).

Attribute control charts (secs. 1.12.10 through 1.12.13) can be used to moni-
tor the process over time.

In addition to the usual ways of defining defects, during the identification process
ask each customer involved in the process what they view as a defect. The cus-
tomer can be the next person receiving your work — internal or external. This not
only helps identify important defects to monitor, but it increases the communication
between process steps.

Y SSEY Sy SUEy SN0

3B
. )
Process Step Defect Inspection
Counting

Figure 1.5.1 Example of Manufacturing Process Showing Stations Where
Defects Are Counted
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1.5.1 Check Sheet

What:

» A data-collection form used to manually tally and record the number of obser-
vations or occurrences of certain events during a specified time period. The
data collected can be either attribute (e.g., defects) or variable (e.g., mea-
surements).

Why:

 To collect and display data easily.

« To collect factual information about the process being studied.

» To answer the question ,“How often are certain events happening?”
* To prioritize efforts where most problems occur.

When:

» Conducting a problem-solving exercise.
Troubleshooting a process.

» Observing the behavior of a process.
Building a histogram.

Gathering data in order to detect patterns.

Process Step

mmnnm —

L 19

2 T I | MFHLM LT | 37

3 T W L THL TG I 30

4 T | I It T 16
Total 18 10 9 35 27 3 102

T
6 Show through T

B [ | 4 Too heavy I M1 If 10
C W M 13 Overspray W[ | | 9
Total | 9 |6 | 8 | 23 Oil canning | I P LI | WL (I | 37
Fish eyes If e 8
Total 28 24 24 14 90

Figure 1.5.1.1 Example of Different Types of Check Sheets for Defects




How:

» The process to be observed is agreed upon by the team.
Decide on the time period during which data will be collected.
Decide whether data will be variable or attribute; define data categories.

Design a form that is clear and easy to use, making sure that all categories
are clearly labeled and that there is enough space to enter the data.

Train the people who work in the process how to collect the data.

Collect the data by making a mark in the correct category for each observa-
tion, making sure that samples are as representative as possible.

Analyze the data for opportunities for process improvement.

Tall Number of observed
y measurements

o O WN =

0.51 to 5.50 T

5.51 to 10.50 THH T TN T 20
10.51 to 15.50 T T T 25
15.51 to 20.50 THL T T T 20
20.51 to 25.50 TH T T 15
25.51 to 30.50 T T 10

Figure 1.5.1.2 Example of a check sheet for variable measurements
(e.g., length, thickness, hardness)
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1.5.2 Defect Concentration Diagram

What:

» A part sketch to display the location of defects in parts or assembilies.
* A picture of the part, with defects shown by visual indicators.

Why:

 To visually determine if defects are concentrated in areas of a product.
 To help identify causes by highlighting the locations of defects.

When:

* Analyzing a part or assembly for defects to guide improvement efforts.
* Producing a part with numerous defects.

c
¥ m-v'
90000840087

Figure 1.5.2.1 Circuit Board With Defects Identified

L

Figure 1.5.2.2 Defect Concentration Diagram




How:

Prepare a drawing (picture or schematic) of the part or assembly (and identify
it as “uncontrolled”).

Decide how defects will be shown on the drawing (e.g., stick pins).
Train the people who work in the process to collect the data.

Collect the data for a number of parts, making sure that samples are as
representative of the production process as possible.

Mark the drawing, picture, or schematic showing the location of each defect
(indicate the defect mode if possible).

Analyze the diagram for patterns, diagnose problems, and begin improvement
actions.
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1.6 Pareto Analysis

What:

» A bar chart where the bars are arranged in descending order of magnitude.
The bars may represent defect categories, locations, departments, and so on.
The magnitude (length) of the bars may represent frequencies, percentages,
costs, or times.

Why:

* To prioritize actions needed to solve complex problems.

 To sort out the “vital few” from the “trivial many.”

» To separate important from unimportant causes contributing to a problem.
» To measure improvement after changes have been made.

When:

» Many factors contribute to a problem.

« Attention needs to be directed only to the few factors that account for most of
the problem.

» Analyzing the results of a risk analysis.

How:

* Identify the problem and the time period for the study.

Define the types of data to be analyzed (e.g., defects, locations).

Define the form of measurement to be used (e.g., frequency, percentage).
Collect representative data and categorize.

Count and arrange the data in descending order.

If possible, assign costs to each category, multiply frequency by cost, and
reprioritize.

Reasons for Rejected Crushed Core Panels

100

Percent

ng%;f of total
errors 50

0
1Y
o
=
Resin starvation 58 “
= . .
Split core 23 2 o Cumulative percent line
=
Scrape 7 5
Discoloration 6 =
o
Warped 2 () 40
Broken 2 g
Other 2
20
Total 100
0

Resin Split  Scrape Discolor- Warped Broken  Other
starvation core ation

Figure 1.6.1 Pareto Diagram for Types of Errors




» Make a bar chart of the data and clearly label categories.
» Analyze results and prepare improvement activities for “vital few.”

Pareto Problem-Solving Method:

» Pareto analysis is used to rank order the reasons for problems so that correc-
tive action can be taken on the major causes of the problem. Pareto charts for a
problem often lend themselves to further dissection.

» As arule, start to work on one of the tallest bars (e.g., resin starvation) in figure
1.6.1. Construct a new Pareto to describe its components. Continue to break
down the components until elementary levels are reached (see fig. 1.6.2).
Working problems at the most elementary levels will result in improvement at
the higher level.

» Once the causes for the tallest bar have been resolved, proceed to the next
tallest. (If the tallest bar requires significant time and resources to work and the
team is new, it may be of value to tackle a shorter, faster bar first.)

« Continue this process until the root causes have been eliminated, or reduced to
a satisfactory level.
Strengths:
* Progress can be measured.
 Efforts and resources are focused.
* The chart is easy to use and understand.
* It is an effective communication tool.

Weaknesses:

« The “vital few” could be misleading if only the number of occurrences are
analyzed without regard to costs per defect.

Location of Resin Starvation on
Crushed Core Panels

100

Cumulative percent line

80

Percentof g,
total errors

C B D A E
Location

Figure 1.6.2 Pareto Diagram for Locations of Resin Starvation
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1.7 Key Characteristics Overview

From a business view, we want to focus our attention and expend resources on
what is important. By identifying the key characteristics of a product, we can focus
work on the characteristics most important to the customer and also on those
where variation most influences manufacturability, profitability, and quality.

Fundamentally, key characteristics are product features where variation is
hurtful and costly.

Per D1-9000, section 2.1.1, “A key characteristic is a feature whose variation

has the greatest impact on the fit, performance, or service life of the finished
product from the perspective of the customer.” Focusing problem solving and
variation reduction on correctly chosen key characteristics will provide positive
economic benefit as well as improving quality and productivity.

Using the AQS concept of the “Quality Lever” (see the AQS Concepts section in
D1-9000), variation is best reduced or mitigated through upfront management
decisions and good engineering design (including the use of DOE for improved
design and robust design). If not dealt with there, then variation must be dealt with
by statistically analyzing and controlling processes throughout production and test,
and at suppliers. To be most effective, key characteristics are best selected by a
cross-functional team that includes the customer and supplier.

It should also be noted that variation reduction depends upon a good Basic Quality
System (described in D1-9000, section 1) being in place.

However, variation measured in key characteristics or processes can point to a
need to improve elements of the basic quality system.

D1-9000, section 1 and section 2 are not independent; they are interdependent and
should be used together.

The key characteristics must be recorded on an AQS Control Plan or equivalent,
The method by which key characteristics is determined must also be documented.

Skin
laps

Contour

Diameter B

[

Body Section

Figure 1.7.1




1.7.1 Key Characteristics

What:

» D1-9000 defines a key characteristic as a feature whose variation has the
greatest impact on the fit, performance, or service life of the finished product
from the perspective of the customer.

Key characteristics should not be confused with flight safety or design fea-
tures, that are sometimes called critical characteristics in the aircraft industry.
Key characteristics may or may not also be categorized as critical characteris-
tics.

An example of a key characteristic for a shear tie manufactured by a supplier
and provided to Boeing is shown in figure 1.7.1.1.

Discussion:

Every feature of an assembly, subassembly, component, or detail part has
variation; however, only a small number of these (the key characteristics of the
product) have variation that will significantly affect the fit, performance, or
service life of the final product. These characteristics are particularly hurtful and
cause loss.

To be most effective, AQS needs to be applied judiciously and correctly. This
includes the control and reduction of variation of key characteristics using the
approach and tools described in this document.

The choice of key characteristics fundamentally relies upon the integration of
the concepts of variation and the loss function as described in D1-9000. Key
characteristics are features with steep loss curves in relation to the engineering
specifications or current variation of the feature. Variation in a key characteristic
causes significant loss.

If key characteristics are properly chosen and AQS applied properly, products
will have higher quality, losses will be reduced, and customers will be more
satisfied.

Shear Tie

Figure 1.7.1.1
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Why:

» To focus resources on features that cause the most loss.

To identify features that require special attention and need variation controlled
and reduced.

To identify where SPC will most benefit the product.

» To aid communication throughout design, production, and testing. This would
include communication with the customer, Boeing, the supplier, and subtier
suppliers.

To identify features that are critical to assembly and function and that could
be strongly impacted by variation.

To identify features that Engineering should make robust or “design out.”
» To improve customer satisfaction.

When:

 Called out on a drawing or SCD from Boeing.

» AQS is contractually required.

» Product or process improvement is desired or needed.
* A new product is being designed.

» A problem-solving effort identifies a variation problem.

Conditions:

» Key characteristics should, it is hoped, be few in number.

» Key characteristics are features where manufacturing variation is costly and
hurtful.

» Key characteristics should have steep loss functions relative to the engineer-
ing specifications or the variation in the process.

» Selecting key characteristics requires a thorough knowledge of the company’s
processes, the interaction of products and processes, “used-on” information,
and customer needs and problems (see sec. 1.0, Product, Process, and
Problem Analysis).

How:

» Use a cross-functional team approach. Include customers and suppliers.

* Investigate customer needs and requirements, including specifications,
problems, used-on information, and so on.

» Collect and analyze historical data: quality problems, scrap, rework, rejec-
tions, waste, unit performance, test results, and so on.

* Investigate and document the production processes.

» There is no one method for selecting key characteristics; however, risk analy-
sis has often proven to be an effective tool (see sec. 1.7.2). Figure 1.7.1.2
summarizes some of the commonly used approaches to identifying key
characteristics.

» Draw a flowchart, develop a measurement plan, identify tooling needs, and so
on.

» Document the information on the AQS Control Plan or equivalent.




» Continue the AQS process to reduce variation, solve problems, and pursue
continuous improvement. High-level key characteristics should be flowed
down to lower level key characteristics and key process parameters (see
section 1.8).

Summary of Approaches to Identifying Key
Characteristics

Selecting and evaluating key characteristics is done throughout the product life
cycle, from early in the product definition phase through design, fabrication, assem-
bly, and operation.

There are various tools that can be used by teams (e.g., IPTs) for identifying and
selecting key characteristics. The primary methods used depends upon the situa-
tion and the goal.

Figures 1.7.1.2 and 1.7.1.3 summarize some of the concepts and tools that can be
used. Usually, multiple tools are used together during the process of identifying key
characteristics. Any one or combination of the tools can be used.

Variation Loss Function
Customer

Requirements
(internal and
external)

Statistical Variation Risk Analysis
Analysis 8

| /\ IJ\ | /\I

|<—_ " —>| Key Characteristics mﬂ”ﬂﬂﬂl

Historical Data Flowdown
|] Analysis
/ Product, Process, and %
s Problem Analysis @ @ G KEY> [KEYS [KEYD [KEY
- =
[ [
[ +

Figure 1.7.1.2 Some concepts and tools used in identifying key characteristics. Any one
or a combination of these methods can be used to identify key characteristics.

Key characteristics are identified not only at the end-item level as perceived by the
final customer, but also at lower levels of the design-produce chain (for example, at
the assembly, component, detail, and process levels). The choice of tool(s) to use
depends upon many factors. It depends

» Upon where in the customer-design-build-produce phase you are.
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» Upon the level of information you have from both customer and internal
sources.

» Upon the intent and purpose for identifying the key characteristic (e.g., to
support customer needs or to support internal waste and quality initiatives).

» Upon whether you are involved in a product design and development process
or a business process.

Note: There are a number of processes utilized in the production of Boeing
parts which do not fit the usual scenarios. For example, there are some
processes which do not have key characteristics that are easily measur-
able in the production setting, particularly when you are considering
processes that must exhibit long term environmental durability.

An example of this is in the structural bonding of aluminum parts. A
simple test at the end of the bonding process does not currently exist
which can evaluate the success of the prior process steps, or represent
the actual conditions the parts are exposed to in service. It is also pos-
sible that it is not possible to measure intermediate key characteristics at
each process step.

Processes such as phosphoric acid anodizing and bonding, are typically
a combination of a number of sequential interlinked individual processes,
each of which must be held within a given set a parameters in order for
the total process to yield good results. The tools outlined in this docu-
ment for monitoring the key process parameters will be valuable for
stabilizing the process and identifying the causes of parameter drift. In
addition, a vital element in controlling the output of these kinds of pro-
cesses is to ensure that standard processes are defined, implemented
and rigorously followed.




Approach Purpose and Description

Loss Function
(See D1-9000,
Concepts section)

* To evaluate and compare the potential economic loss due to variation
from target of product features and characteristics.

¢ The greater the deviation from target, the greater the loss. Exact loss is
rarely known.

® The loss function is normally used conceptually since it usually cannot be
expressed explicitly.

Flowdown
(See section 1.8)

To flow down customer requirements in order to identify end-item and
high-level key characteristics.

To flow end-item or high-level key characteristics down to lower level key
characteristics on assemblies, components, details, processes, and key
process parameters.

e Use cause and effect diagrams or structure-tree diagrams (see sections
1.3 and 1.4), or DOE (see sections 1.17 and 2.0).

Statistical Variation
Analysis (Tolerance
analysis)

(See section 1.7.3)

e To analyze the overall variation of interacting dimensions by simulating or
statistically tolerancing combinations of components, where each
component is defined in terms of a statistical distribution. Predicts
amount of variation allowed in each component so tolerances can be
allocated.

Risk Analysis
(See section 1.7.2)

¢ An analytic method using the ratings of selected criteria to identify
significant product or process characteristics for further study.

Often the objective of this analysis is to identify product characteristics
that most influence the loss function. The criteria are chosen such that
they represent elements of the loss function. The criteria for the product
characteristics are then rated and multiplied together to produce a risk
number representing loss.

Historical Data
Analysis

(See D1-9000,
section 2.1.2; D1-
9000-1, sections

e |t is useful to begin a risk analysis having a thorough brainstormed cause
and effect analysis in hand (see sections 1.2 and 1.3).

e To evaluate data on such things as rejections, scrap, rework, waste, unit
performance, test results, and warranty costs from actual or similar parts
and assembilies, or processes where patterns or repetitive non-

Experiments
(See sections 1.17
and 2.0)

1.0and 1.7.1) conformities may indicate symptoms of root-cause problems in a design
or process.
Design of ¢ A statistical method used to study and find the variables and their values

that most affect the performance of a design or process.

Product, Process,
and Problem
Analysis

(See section 1.0)

e This is a data-driven approach to identifying and prioritizing improvement
activities through use of a broad set of analytic tools in looking at
processes and problems involved in designing and producing a product.

e |t is the up front work, thinking, and analysis, done prior to identifying key
characteristics.

e |t is the first step in the AQS flow.

Figure 1.7.1.3 Commonly Used Approaches for Identifying Key Characteristics
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1.7.2 Risk Analysis

What:

* Risk analysis is an analytic method using the ratings of specified criteria for
prioritizing and selecting items for further study. It results in a Pareto chart to
aid in the prioritization.

Risk analysis is often used in AQS as a process to help select key character-
istics from a list of several potential key characteristics. The name “risk analy-
sis” comes from the notion that associated with each characteristic is a
certain risk based upon specified criteria. This risk is based on 1) the fre-
guency of that characteristic being out of tolerance, 2) the severity of prob-
lems resulting from the characteristic being out of tolerance, and 3) the
inability to detect the out-of-tolerance condition before shipping an undetected
defect. Characteristics for which defects occur frequently, cause severe
problems and are difficult to detect, represent a high risk, and need to be
controlled. They are the key characteristics of a part.

Note: This method can also be used for situations other than the identification
of key characteristics. For example, a similar approach can be used to
identify parts that need to be emphasized for further analysis, potential
product design problems, potential failure modes, manufacturing areas
that need special attention, or relocation sites. The criteria for evaluation
depend upon the situation.

Why:

» Helps focus the team when brainstorming key characteristics.
» Provides an analytical method for determining the “essential few.”

« To facilitate better and more open communication among engineering, manu-
facturing, customers, and suppliers.

When:

* Establishing key characteristics.
* Identifying potential design, manufacturing, or quality problems.
» There is a need to prioritize items.

* Items can be virtually anything for which there are two or more criteria
that can be used (rated) to prioritize the items. Examples: parts that need
to be worked, suppliers to be chosen, relocation sites, or applicants for a
position.

Risk Number
(Impact on fit,
performance,
or service

life)

Figure 1.7.2.1 Pareto Diagram of Risk Numbers for Candidate Keys
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How:

» The steps in a risk analysis for selecting key characteristics are listed below
and are followed by a discussion of each step and an example.

Step 1. Assemble a cross-functional team. Include customers and suppliers
whenever possible.

Step 2. Gather data and brainstorm. Gather data from waste and reject
history, customer complaints, warranty costs, acceptance test
parameters, and so on.

Step 3. Compile a list of candidate high-level key characteristics.

Step 4. Perform risk analysis.  Fill out the risk-analysis work sheet for the
candidate key characteristics.

Step 5. Selection. Select key characteristics based on the risk-analysis
information and scores.

Step 6. Flowdown. Create structure-tree diagrams or cause and effect
diagrams showing how each of the key characteristics identified at the
higher level of assembly flows down to lower level characteristics.

Gather Data and Brainstorm

The process begins with brainstorming a list of candidate key characteristics.
Information used in this process includes such items as historical data, experience,
customer requirements, drawings, and test requirements.

A careful study of the use of the part in the next higher assembly or installation
should also be conducted to ensure that the compiled list is complete. Conclude
the session by identifying for each candidate key characteristic whether variation in
that characteristic affects the fit, performance, or service life of the part. This
identification will help to ensure that you have considered aspects that define the
fithess for use of the part.

It may also be beneficial at this time to compare the compiled list of characteristics
with key characteristics that have been selected on similar parts.

Risk Analysis Work Sheet

Using the risk analysis work sheet, a team can assess the “riskiness” of a charac-
teristic by assigning a number to each of the three elements of risk. Characteristics
with higher risk numbers are better choices for key characteristics. The risk num-
ber is determined by considering the frequency of occurrence of defects (that is,
variation in output), the severity of the impact of variation in this characteristic, and
the detectability of defects (that is, the ability of the process to detect defects
associated with the characteristic).

There is no magic involved in determining a risk number. It is based solely on both
the factual and subjective contributions of the team. Risk numbers may be partially
subjective, but the process of discussing the characteristic, reviewing the inputs,
and assigning a number is a methodical one. The true benefit of the work sheet is
in its ability to elicit information from the team for open discussion and common
understanding.

The rating numbers assigned during a risk analysis are relative. The absolute
value of the numbers is not as important as the relationship of the values to one




another. The purpose of the ratings is only to help select among the list of current
candidate characteristics. Risk numbers from different analyses on different as-
semblies are not generally comparable.

The following items describe how to use the risk-analysis work sheet shown in
figure 1.7.2.3. (Fig. 1.7.2.3 shows a sample work sheet used to identify the key
characteristics of the splice plate shown in D1-9000, section 2.1.3.)

Candidate key characteristics . Place the brainstormed list of candidate key
characteristics in column 1.

Potential cause of variation . Based on historical data and experience, in
column 2 identify potential causes of variation for each of the candidate key
characteristics. This identification is useful when flowing down the key
characteristic to the next lower level of assembly or to a manufacturing
process.

Effect of variation . In column 3 identify what the possible effect would be as
the key characteristic varies. Use the structure-tree diagrams constructed
earlier to determine how the candidate key characteristics affect key
characteristics at the next higher level of assembly. (The ideas captured here
relate to the severity factor.)

Occurrence . Estimate on a scale of 1 to 10 the likelihood (with 10 being the
most likely) that the characteristic will vary outside the specification limits. This
number should be assigned based on what happens as the characteristic is
being produced — not after any rework takes place. The number should reflect
what the team has learned about historical problems with similar
characteristics. The occurrence rating can be derived from a Cpk value if
available (see figure 1.7.2.2).

Regardless of the resulting risk number calculated in column 7, this occurrence
number is an indicator of the current capability of the process. Corrective and
preventive action, including SPC, should be taken to reduce high occurrence
ratings.

Severity . Estimate on a scale of 1 to 10 how severe (with 10 being the most
severe) the effect of variation (noted in column 3) will be for the customer.
Severity is the factor that represents the steepness of the loss function of the
characteristic, which, in turn, reflects the seriousness of variation in the eyes of
the customer (see figure 1.7.2.2).

Regardless of the resulting risk number calculated in column 7, the severity
number is often a good indicator of the existing robustness of the design.
Design changes should be considered to reduce high severity scores.

Detectability . (In actuality, nondetectability.) Estimate on a scale of 1 to 10 the
likelihood (with 10 being the most likely) of passing on a part that has a
particular characteristic out of tolerance. This rating should be assigned given
the current inspection system. Characteristics with a higher detectability rating
will be good choices for key characteristics because defects run a greater risk
of not being caught (see figure 1.7.2.2).

Risk number . Calculate the risk number by multiplying the occurrence (4),
severity (5), and detectability (6) ratings. This number used in a Pareto analysis
can guide the team in the selection of key characteristics. High ratings in each
column will result in a high-risk number. If a characteristic’s variation has little
impact on defects occurring (occurrence rating), or if it does not cause
problems as it does vary (severity rating), or if its variation is easily detected
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Risk Analysis Ratings

Occurrence Rating

Approximate
probability Assgcl:ted
of failure

1/10,000 Remote probability of the characteristic varying outside of the specification limits.
Process is in statistical control and is capable.
2 1/5,000 125 Low probability of occurrence of nonconformity.
3 1/3,000 1.20 Process in statistical control, but not quite capable.
4 1/1,000 1.10
5 1/400 1.00
6 1/200 0.95 Moderate probability of occurrence. Generally associated with processes that
have experienced occasional failures but not in major proportions. Process in
statistical control but not quite capable.
7 1/100 0.85 High probability of occurrence. Generally associated with processes that have
8 1/40 0.75 often failed. Process in statistical control but not capable.
9 1/20 0.65 Very high probability of the characteristic varying outside of the specification limits.
10 110+ 0.55
Severity Rating
1 Unreasonable to expect that the minor nature of this failure would cause any noticeable effect on the next higher
level assembly or system performance. Customer will probably not be able to detect effect of variation.
2-3 | Variation causes only a slight customer annoyance. Customer will probably notice only very minor performance
degradation, or very minor problems at next higher assembly.

4-5-6 | Customer is made uncomfortable or is annoyed by the variation. For example, moderate failure ratings would be
given to undesirable attributes such as part trimming on installation, high actuation forces, and light scratches on
visible parts. Customer will notice some subsystem or aircraft performance degradation.

7-8 | High degree of customer dissatisfaction due to the nature of the failure, such as an inoperable subsystem,
premature corrosion of structural components, lack of fit, or reduced service life.

9-10 | Variation involves potential safety considerations.

Detectabilty

Approximate

probability
undetected

1 1/10,000 Remote likelihood that the product would be passed on containing that defect. The defectis a
“functionally obvious” characteristic (e.g., missing handle) that can readily be detected.

2 1/5,000 Low likelihood that the product would be passed on containing the defect. The defect is an

3 1/2,000 “obvious” characteristic (e.g., absence of a fastener hole).

4 1/1,000

5 1/500

6 1/200 Moderate likelihood that the product will be passed on containing the defect. The defect is an

7 1/100 “easily” identified characteristic (e.g., wiring connection functionally checked).

8 1/50

9 1/20 High likelihood that the product will be passed on containing the defect. The defect is a “subtle”
characteristic (e.g., wiring partially assembled).

10 1/10+ Very high likelihood that the product would be passed on containing the defect. ltem is not
checked or not checkable. Defect, such as one that affects durability of component, is latent and
would not appear at manufacturing or assembly location.

Figure 1.7.2.2




3 =G
Candidate Potential c ‘S =
Key Causes of Sff(_ect_ of o -'E gl 2
Characteristics Variation ariation o S 2| x
73 M o 0
o (7] (a] o
Material — Supplier material | Premature 2 6 6 72
elongation processing failure of part
6% minimum (chemical
or heat treat)
Hole diameter e Force Rework/scrap 2 2 2 8
0.500 + 0.005 ® Speed
0.500 step ¢ Wrong cutter Difficult 3 8 8 192
+ 0.005 ¢ Bad setup assembly/
shimming
Part fatigue
Part or Process .
Name Splice Plate Date
Part or Process  ¢p17g31.1
Number

Figure 1.7.2.3 Sample Risk Analysis Work Sheet

(detectability rating), then its risk number will be correspondingly reduced. Risk
numbers can be as small as 1 and as large as 1,000. (Note: depending upon
the situation, different weights can be placed upon the occurrence, severity,
and detectability ratings prior to their multiplication.)

Selection

Once the risk analysis work sheet is completed, the process of selection can begin.
Those characteristics with a high-risk number are better choices for key designa-
tion. This guideline is tempered by the recognition that a certain amount of judg-
ment will always be required when selecting key characteristics. The risk analysis
work sheet is an important aid in determining what characteristics should be key,
but its ratings are not to be considered absolute. A Pareto diagram of the risk
numbers will help provide a visual picture of their relative magnitudes (See figure
1.7.2.1).

Choosing the number of key characteristics to identify is a subjective decision that
needs to be based on the risk associated with the characteristic, as well as on the
resources required to track the characteristic.

If a good-faith effort has been made to determine key characteristics and yet no
candidates appear to be key, then a designation of “No Key Characteristics” may be
most appropriate for that part or process. Documentation of the steps used to
conclude that there are no key characteristics is required.
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Further Analysis

In addition to the choice of the key characteristics, each column should be exam-
ined for high ratings, and as a result, changes to the design or manufacturing
process should be evaluated for each high score. For example, process capabilities
may need improvement, designs made more robust, or design/inspection pro-

cesses improved.

Risk Analysis — Actuator Clutch Assembly

3 =
3| |28
Candidate Potential c S | €
Key Causes of 5ff¢_ectt_ of 2 -'E g2
Characteristics Variation ariation 2 |2|2|x
O |0 |o |2
O |»nw | o |
Spring rate e Helix angle e Change in slip 3|4 |3 |36
e Material torque
¢ Length of spring | ® Change on shim
e Diameter of requirements
spring
* Wire diameter
Skewed e Manufacture of | ® Change in slip 3|7 | 4 |84
roller angle roller disk torque
e Change in shim
requirements
Clutch disk e Manufacture of | ® Variation in slip 6 | 8 | 4 |192
flatness plate torque
Clutch disk e Grinding process| ® Variation in slip 2162 |24
finish torque over time
and service life
e Service life on
rollers may suffer
Roller diameter | e Vendor control | ® Variation in slip 3|3 |3 |27
torque over time
and service life
e Service life on
rollers may suffer

Figure 1.7.2.4
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KEY




Example 1: Risk Analysis of Actuator Key Characteristics

The customer identified a key characteristic for a baggage-handling system actua-
tor as the slip torque of the clutch assembly (see figure 1.8.1 for the structure-tree
diagram). The slippage of the clutch protects the actuator during a jamming condi-
tion or upon impact with the end stop. There had been rejections due to a failure of
the clutch to slip. To identify key characteristics in the clutch assembly, the supplier
formed a cross-functional team. The team brainstormed a list of detail part charac-
teristics that could affect the slip torque and completed a risk analysis work sheet
(shown in fig. 1.7.2.4) to help select the key characteristics.

Example 2: Web Assembly Detail Frames

Detail frames that make up the frame web assembly shown in figure 1.7.2.5 are
manufactured by a supplier and then assembled at Boeing. One problem experi-
enced during assembly was that over 50% of the time there was an overlap where
the frames joined. These overlaps required trimming. Another was excessive
shimming required whenever the detail frame width was either too narrow or out of
contour.

The producer conducted a risk analysis, looking at the effects of variation from the
assembly (customer) and detail (supplier) perspective. As shown in figure 1.7.2.6,
four key characteristics were identified. Tool-hole location is important to the

supplier at the detail level because it is used throughout the manufacturing process.

Note the adaptation of the risk analysis form to show impact from two perspectives
(assembly and detail).

Risk Analysis — Detail Frames

Detail frame
width too narrow
and out of contour;

Left-side shimming required

frame

Right-side
frame

Detail frame
length too long;
trimming required

\

Tool-hole location

Bottom frame

Figure 1.7.2.5 Detail Frames

@ﬂﬂf]ﬂﬁ

D1-9000-1
49



@ﬂﬂf]ﬂa

Risk Analysis — Detail Frames

™
3 £ | 3
Candidate Effect of S '.g g
Key Variation E © Z
Characteristics o 2 x
o [ @
(@] (] o

Length Rework: assembly | g 7 8 336 KEY
trimming detail 2 3 9 54

Width Rework: assembly | g 6 6 180 |n=y
shimming detail 8 9 5 360

Tool-hole Possible aosemdly | 5 7 2 28 o=y
locations scrap detail 9 9 6 486

Contour Rework: assembly 7 5 6 225 KEY
shimming detail 8 6 6 288
Flatness Rework: assembly | 4 3 2 6
straightening detail 5 7 2 70
Return flange Possible assembly | 4 2 3 6
angle scrap detail 1 2 2 4
Tab locations Possible assembly | g 2 4 64
scrap detail 2 2 7 28

Figure 1.7.2.6 Risk Analysis for Detail Frames
In addition to the choice of the four key characteristics, each column should be
examined for high ratings and as a result, changes to the design or manufacturing
process should be evaluated for each high score. For example, in examining the
occurrence, severity and detectability columns, process capabilities may need
improvement, designs made more robust, and design/inspection processes improved,
respectively.
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1.7.3 Three Dimensional Statistical

Variation Analysis

What:

Statistical variation analysis is a method for analyzing the overall variation of
interacting part dimensions and tolerances by simulating or statistically
tolerancing combinations of components, where each component is defined
in terms of geometry and varied by statistical process behavior. Variation in
the final product is analyzed as a function of the variation in the interacting
features of the detail components and the assembly processes that constitute
the final product.

It is a three dimensional variation effects analysis. It can produce process
statistics such as the mean, standard deviation, Cp, Cpk, percent out of
specification, high value, low value and histograms, as well a Pareto ranked
list of contributors to each requirement monitored in the model.

Why:

To evaluate the effects of detail part tolerances, detail part fabrication capa-
bilities, assembly sequence, assembly methods, assembly process variation,
tooling variation, indexing methods and measurement variation on end item
requirements.

To determine compatibility of the design, fabrication plan, tooling concept,
assembly plan, measurement plan, and product requirements.

To reduce rework by improving product definition and production plans and
ensuring they work together.

To statistically predict product performance.
To allocate tolerances to components and detail parts from the assembly.

To identify key characteristics based on assembly process capabilities in a
mathematical manner.

To encourage a simultaneous solution for all product requirements.

When:

Any time in the product life cycle. It is of particular value during the product
definition phase.

Analyzing long, complex tolerance paths.
Identifying key characteristics.

How:

For a simulation analysis a single integrated product model is constructed and
processed by a core variation analysis group.

1. Detail components are constructed in computer aided design (CAD).
. Datums and tolerances are applied.

. Assembly tooling is constructed in CAD.

. Datums and tolerances are applied.

. Measurement fixtures/devices are constructed in CAD

. Datums and tolerances are applied.

. Assembly sequence is defined.

. Assembly processes are applied.

. Measurements are defined.

©O© 0 N O Ol WDN
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10. Custom simulation code is written and incorporated to improve
accuracy.

11. Simulation code is compiled and simulated.
12. Prediction data is interpreted.

13. Data is translated into sketches and summarized for easy
communication.

» The information and recommendations are communicated back to the product
teams for evaluation and implementation.

 For performing a statistical tolerance analysis (see the reference under

Discussion).
CAD Part End-item
. Performance

Geometry Requirements

CAD Tool Variation Key
Geometry [ [IBUECULY | Characteristics

Analysis

Assembly \ Tolerance Cost
Sequence i Drivers

Procg_s_s Measurement Drawing

Capabilities Plan Tolerances

Figure 1.7.3.1 General Flow of Data Through the Simulation Analysis Process—
Shown are the various inputs needed by variation simulation analysis software along with
the types of output delivered.

Conditions:
» A geometric engineering model of the completed assembly and its detalil
components is available.
» Tooling concept and geometric model is available.
Assembly methods and sequence are available.
» Measurement plan and technique is available.

» Unique software is required to perform the simulations on the engineering
model of the completed part.

The statistical distributions of the interacting dimensions is known.
D1-9000-1 « Accurate process capabilities of the interacting dimensions is known.
52




Discussion: Statistical Toterancing

In the situation where two or more components make up an assembly, tolerances
need to be allocated to the interfacing dimensions of individual components in such
a way that the final end-item dimensions of the assembly are within tolerance. Such
tolerance allocation is accomplished by a tolerance analysis. Two of the prevalent
method for tolerance analysis are worst-case tolerancing and statistical tolerancing.
Worst-case tolerances are established so that even if the components are pro-
duced at their extreme dimensions the resulting assembly tolerances are still
achieved. This is a very safe approach; however, it may be costly due to the re-
quired tight tolerances and resulting increase in inspection (often 100%).

Statistical tolerancing assumes that the stacking dimension on each component is
independently and randomly produced about the desired target. In this case the
deviations from target are expected to offset each other, with the final assembly
highly likely to be within tolerance. The required statistical tolerances on the com-
ponents can therefore be more liberal than worst-case tolerances. As a result this
approach is less costly than worst-case tolerances, but requires that statistical
control charting and process capability analysis be performed as described in this
document.

Statistical tolerancing takes into account the statistical behavior of the manufactur-
ing processes, whereas the worst-case tolerancing assumes the maximum and
minimum dimensions may occur. Statistical tolerancing assumes that it is highly
unlikely that the maximum or minimum dimensions on the components will occur
simultaneously.

For a discussion of these and other more complex tolerancing methods see the
Boeing Company report ISSTECH-95-030, Tolerance Stack Analysis Methods,
authored by Fritz Scholz, 1995.

Example:

A three dimensional variation simulation analysis is performed for skin gap. Figure
1.7.3.3 shows a typical analysis.

rZ 4

ar = pnoon

— ||

Skin gap .100 +/- .080

Figure 1.7.3.2 Typical Product Requirement
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Al K4A0FMEG420 5011 2000 samples
—» Skin Gap 42041@ 525595041 1 D2epk<2.0
Marninal @ 01000
Mear : 0.1002 751
Standard Deviation : 0.0256 F 5300 4
Lower Spec Limit © 00400 =
Upper Spec Limit © 0,160 E 150
Cp: 07511 75 |
Cpk: 07779 0
Distribution :  Tested Mormal -0.0100 0.0600 0.1300 0.2000
Sample Est Sample Est*
%« Low Limit 1.0000 048319 Low -0.0021 n.0224
%+ High Lirnit 1.0000 0.9503 High 0.1933 01771
% Out of Spec 2.0000 1.9122 Rarge 0.1954 0.1536
95% C.I for % Out of Spec : 1.3864 to 26136 ® Est Range 99 7300%
Morninal at Median © 01000 HLM Study
HLM Variance : 0.0003
Talerarce Effect
A1K42M00_lwrsil GTL e

-» Comp: A1 F42M00 Feat: A1 K42000_Twrsil
-» Surface Profile 0.0700 [4|B|C]

&1 K42M00_s185000_GTL

-» Comp: &1 K42F00 Feat: A1K42M00_s185000
- Surface Profile 0.0500 [4|B|C]

Al K42M00_trim259_GTL -1 FA49%

—r Comp: &1 K4ZM00 Feat: A1 K42M00_trim259
-» Surface Profile 0.0700 [A|B|C]

Al K41 MOD_TRIM259_GTL 12.85%
-» Comp: &1 K41F00 Feat: A1K41MO0_TRIM255
- Surface Profile 0.0500 [A|B[C]

A1 R43M0T _stab00b_ GTL 12.82%
—» Comp: &1 K43M01 Feat: A1 K43M01 _staS00k
-> Surface Profile 00600 [A|B|C]

A1K43MO1_mdsd312_GTL |
-» Comp: &1 K43M01 Feat: A1K43M01 _mcds4312
-» Surface Profile 0.0400 [4|B|C]

A1 k42m00_rnds42_ GTL I 1.11%
- Compy: &1 K§2M00 Feat: A1 K42 000_mcs42
-» Surface Frofile 0.0400 [A|B|C]

4]

99.3533%

15 additional contributor{s) < 1.00% each 0E7%

Figure 1.7.3.3 Typical Variation Simulation Analysis Output Showing an Analysis for Skin
Gap— The analysis shows various process statistics and histogram for skin gap as well a
Pareto diagram of contributors monitored in the model.




1.8 Key Characteristic Flowdown

What:

A hierarchical approach of flowing a key characteristic for an assembly or
product down to key characteristics on those subassemblies, details, and
processes believed to affect variation of the top-level key.

Why:

* To identify key characteristics for lower level parts and processes which, when
controlled, will ensure that the assembly high-level key characteristic is in
control and capable.

» Control and improvement in lower level keys and process keys will result in
substantially better products and reduction in cost and cycle times.

» A top-level key characteristic that is in control and capable often is simply the
result of costly and intense inspection, sorting, and rework of lower level
parts. In order to drive out variation and reduce costs of all parts in an as-
sembly, key characteristic flowdown should eventually be performed for all

assemblies.

Clutch Assembly Key Characteristic Flowdown

Slip torque

(See risk analysis for clutch assembly in figure 1.7.2.4.)

Figure 1.8.1 Flowdown of Slip Torque

Actuator Stall torque
Static brake torque
I 1
I Stall torque - Brake torque
Gear box Motor L Rotor/stator Brake | Disk-t
I location h(l)sus-ir?g- gap
|— Rotor/stator
Clutch assy [ Slip torque concentricity
I Outside
. Spring | Rate - Rotor diameter = Disk - Flatness
- Winding
resistance
— Clutch disks [ '2ness Stator Inside —  Seing  [Rate
- Finish diameter
= Rollers - Diameter = Shaft I Concentricity | Solenoid L Force
- Skewed - Roller e Bearing - Diameter
roller plate angleRer>
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When:

* Identifying key characteristics for an assembly.

* Responding to high-level key characteristics that are out of control or not
capable.

* Identifying sources of variation in the subassemblies, details, and processes.

* A high-level key characteristic is not measurable in the production environ-
ment, for example, mean time between failure (MTBF).

How:

 Establish a cross-functional team to perform the following steps.

» Select either the structure-tree diagram or cause and effect diagram (de-
pending on preference) for documenting the flowdown process.

Both of these tools are useful for establishing and documenting the relation-
ship between the top-level assembly and its subassemblies, details, and
processes. Figure 1.8.1 shows an example of how a structure-tree diagram
was used to show the relationship of an actuator’s key characteristics to
candidate key characteristics of the subassemblies and detail parts.

» Using brainstorming, identify the subassemblies, details, and processes (the
causes) that are believed to affect the assembly key characteristics (the
effects). Tolerance chains, computer models, DOE, and other analytic meth-
ods can be used.

« Identify key characteristics for the next lower level parts and processes.

» Continue the process for each successive level within the assembly, using the
next higher key characteristic as the “effect” and lower level parts and pro-
cesses as the “causes.” This is done until all relevant key characteristics have
been identified.

» Monitor and control each of the identified key characteristics in accordance
with the AQS process described in D1-9000, section 2.

» Document key characteristic, gage, and process variation information for each
relevant part number in the assembly on AQS Control Plans.

Establishing cause and effect between the key characteristics at the top level of the
tree to the low-level key characteristics is usually done in a team environment,
utilizing the cross-functional knowledge of the members. However, these cause and
effect relationships are still often subjective. Over time, it may become desirable to
use more rigorous methods of statistical data analysis or statistically designed
experiments (DOE) to establish objective cause and effect.

If a good flowdown is accomplished, it will be found that by statistically controlling
the lower level key characteristics the higher level key characteristics should (a) be
in statistical control and (b) have less variability. Over time, statistical control of the
lower level key characteristics will allow for less sampling of the higher level key
characteristics, as well as lower costs and increased customer satisfaction.




@ﬂﬂf]ﬂﬁ

Examples of Key Characteristic Flowdown

1.0 Flowdown of a Fit Characteristic: Contour

One key characteristic of a body section is the contour of the skin, because of its
effect on aircraft performance. Skin contour is flowed down to the panel assembly
and then down to the frame assembly, where it is determined that a flush mating
surface between shear ties and skin is critical to contour. This determination, in
turn, flows down to a requirement for a 90-degree bend angle on the shear tie. This
flowdown is shown in figure 1.8.2. (Note: Service life or performance characteris-
tics often flow down to fit characteristics on detail parts.)

Skin

Diameter B

Contour

Shear Tie Assembly

Figure 1.8.2 Flowdown of Skin Contour
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2.0 Flowdown of a Performance Characteristic: Sound quality

A key characteristic of an audio speaker is the quality of sound. This key character-
istic is flowed down to the amplifier, where the key characteristic is the gain (that is,
magnitude of amplification). This, in turn, flows down to the voltage drop across a
resistor within the amplifier. See figure 1.8.3.

Sound Quality  [KEY Resistor
Amplificatier gain _
‘ N
Voltage drop KEY Voltage drop
Figure 1.8.3

3.0 Flowdown of a Service-Life Characteristic: Expected time
to failure (MTBF)

A key characteristic of a cargo-door actuator is its expected time to failure. This key
characteristic flows down to several part-level key characteristics, including the
case depth and case hardness of a nitralloy gear within the actuator. Case depth
and hardness are then flowed down to the key characteristics in the nitriding pro-
cess, which produces the case depth and hardness. The key process characteris-
tics are the nitriding temperature, the time at temperature, and the disassociation
rate of ammonia during the nitriding process. See figure 1.8.4.

Actuator MTBF

v

Hardness

and
KEY > Case depth

v

Nitriding Process

* Temperature
* Time at temperature

¢ Disassociation of

ammonia

Figure 1.8.4




1.9 AQS Control Plan

What:

» A form used for documenting relevant AQS information on parts and pro-
cesses. The major categories include information regarding key characteris-
tics, SPC, gage variation and process variation. It is an auditable record and
should be revised as necessary.

* When attached to the manufacturing plan, the AQS Control Plan can also
serve as operator instructions.

* An AQS Control Plan is shown in figure 1.9.1.
Why:

« To explicitly identify and record what characteristics are actually key (symbols
on drawings can sometimes be vague).
 To serve as the basis for a process database.

» To compile process knowledge that can be used to conduct quality planning
in advance of production.

» As a management tool to evaluate and prioritize processes for improvement.

When:

* Information is to be recorded on the AQS Control Plan when:
* Identifying key characteristics.
» Determining where and how to measure the key characteristics.
* Recording the initial and current Cpk value.
» Documenting the results of a gage variation study.

* Investigating sources of process variation and establishing controls for the
key process parameters.

» Monitoring process improvement activities and results.
* Prioritizing improvement activities.

How:

» Complete an AQS Control Plan for each part, family of parts, or key process
parameters as described in the following pages. Alternative formats are
acceptable. (Note: Not every item listed in the AQS Control Plan will neces-
sarily be documented for each key characteristic. If, for instance, a key
characteristic is in control and capable from the outset, gage and process-
variation data is not required to be recorded; however, it may still be valuable
information to collect and record.)

Users are encouraged to record current Cpk values on the AQS Control Plan or
equivalent. The control plan provides a convenient location for auditable Cpk values
(ref. D1-9000, sec. 2.3.2), as well as for the management of process capabilities.

Some producers place AQS control-plan information in a computer database. The
data can be sorted and used in a Pareto analysis to prioritize processes for im-
provement.
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When high-level key characteristics are flowed down to lower level key characteris-
tics, a hierarchy is formed. By observing and improving the process capabilities of
lower level key characteristics, the effect should be observable on the higher level
key characteristics. These changes can be monitored on a well-constructed AQS
Control Plan.

Advanced Quality System — Control Plan Page___of
Key Gage Process
Characteristic Variation Variation
ad [
o5 |235| § 5 P
2o |23 = oo z rocess
KEY g § ; SE § 3 %% %g T x Type, make, o= step Key Process Control DOE
s |PE=| o8 |ED g3 |2 2 | and model T © and process parameter thod
haracteristic 50 |G| £35|85 g|E0 [Ol=3 ; ; methor ?
Cl o8 |82l € N8O of gage @ operation parameters | settings
o |E0E| G Q|nE [¢]
wa o S [¢] 2 number
Lower edge trim 0.500 | After | X-R | 5 4 0.84 | Height gage | 0.0017 Routing Router 2000 rpm Machine Yes
+ |routing per Fowler PTC= 120 speed setting
0.005 shift T27 X 16.6%
Cut 0.250 in
depth

Part/Process Name Team Captain Date (orig)
Part/Process Number Company NameL Revision Number
Used-on Part Number Revision Date

Figure 1.9.1 Sample AQS Control Plan




Filling Out the AQS Control Plan for a Part
(Ref. D1-9000, Secs. 2.1.4, 2.2.3, 2.3.2, 2.3.7, 2.3.12)

Name the key characteristics (e.g., hole diameter, voltage output).

List the engineering specifications of the key characteristics
(e.g., 0.50 inch £ .03 inch, 4.5 ml/hour max).

List the process step and operation number where each key characteristic is
to be measured (e.g., after milling, operation #80).

Specify the type of control chart to be used for recording key characteristic
measurements (e.g., X-bar and R chart).

Record the sample (subgroup) size used on the control chart.

Record the frequency of collecting samples (subgroups) for the control chart
(e.g., once per shift, every 2 hours, each part).

Record the Cpk based upon the initial in-control measurements.

Name the type, make, and model number of gage used to measure the key
characteristic (e.g., depth gage, #13576).

Record the 6 standard deviation spread of the variation in the measurement
system. This is composed of the gage’s reproducibility and repeatability, and
is determined by a gage variation study. It can also be expressed as
percentage of the engineering tolerance consumed (PTC).

Record the name of the relevant process(es) and operation number(s)
affecting the key characteristic (e.g., grinding, operation #110).

Name the parameters in the process that have the most impact on
manufacturing the key characteristic; that is, key process parameters (e.qg.,
speed, feed, pressure).

List the preferred (optimal) operation settings for the key process parameters
(e.g., 500 RPM, 8 in/min).

Enter the method(s) used to ensure that key process parameters and settings
do not change (e.g., new cutter every 10 parts, X-bar and R control chart,
machine setting).

If a designed experiment was used to establish settings and controls, indicate
a YES in this column. Also include experiment reference number.
Fill in administrative data.

* List the part nomenclature in the space for “Part/Process Name.”

* List the part number in the space for “Part/Process Number.”

» Used-on Part Number is the next higher level of assembly the part reports
to in the bill of material.

» Team Captain is the leader of the team coordinating work activities to
define and control key characteristics.

» Supplier's company name.
 Date is the original release date of the AQS Control Plan.

» Revision Number and Revision Date show the most current version of the
AQS Control Plan and the date of revision.

 Rationale for part groupings (see D1-9000, section 2.4.1-2c).
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Filling Out the AQS Control Plan for a Part Family or
Process (Ref. D1-9000, Sec. 2.4)

Name the key characteristics (e.g., hole diameter, length).

List the engineering specifications of the part with the tightest tolerance for
the key characteristic.

List the process step and operation number where each key characteristic is
to be measured (e.g., milling, operation #80).

Specify the type of control chart to be used for recording key characteristic
measurements (e.g., Target X-bar and R chart).

Record the sample (subgroup) size used on the control chart.

Record the frequency of collecting samples (subgroups) for the control chart
(e.g., once per shift, every 2 hours, each part).

Record the Cpk based upon the initial measurements. If the part family being
monitored includes parts with varying tolerances, record the initial Cpk for the
part with the tightest tolerance.

Name the type, make, and model number of gage used to measure the key
characteristic (e.g., depth gage, #13576).

Record the 6 standard deviation spread of the variation in the measurement
system. This is composed of the gage’s reproducibility and repeatability, and
is determined by a gage variation study. It can also be expressed as
percentage of the engineering tolerance consumed (PTC).

Record the name of the relevant process(es) and operation number(s)
affecting the key characteristic (e.g., grinding, operation #110).

Name the parameters in the process that have the most impact on
manufacturing the key characteristic; that is, key process parameters (e.g.,
speed, feed, pressure).

List the preferred (optimal) operation settings for the key process parameters
(e.g., 500 RPM, 8 in/min).

Enter the method(s) used to ensure that key process parameters and settings
do not change (e.g., new cutter every 10 parts, X-bar and R control chart).

If a designed experiment was used to establish controls and settings, indicate
a YES in column. Also include experiment reference number.
Fill in administrative data.

» Part /Process Name — identify, by reference, what parts are included in
the part family or process being monitored (e.g., “see attachment A for list
of parts”).

» Part/Process Number — identify, by reference, what part numbers are
included in the part family or process (e.g., “see attachment A for list of
part numbers”).

» Used-on Part Number — N/A or “see attachment A for a list of where
used.”

» Team Captain is the leader of the team coordinating work activities to
define and control key characteristics.

e Supplier's company name.
 Date is the original release date of the AQS Control Plan.

» Revision Number and Revision Date show the most current version of the
AQS Control Plan and the date of revision.

 Rationale for part groupings (see D1-9000, section 2.4.1-2c).




Filling Out the AQS Control Plan for Key Process
Parameters (Ref. D1-9000 Sec. 2.4)

©O6066 606

Name the key characteristic(s)(e.g., plating thickness, hardness).

References to other documents can satisfy items 2 through 9. This
information is likely to be recorded on previously developed AQS Control
Plans for parts or part families.

List the process step and operation number where each key process
parameter is to be measured (e.g., heat treat, operation #240).

Name the parameters in the process that have the most impact on
manufacturing the key characteristic; that is, name the key process
parameters (e.g., speed, feed, pressure).

List the operation settings for the key process parameters (e.g., 500 RPM,

8 in/min).

Enter the method(s) used to ensure that key process parameters and settings
do not change (e.q., instructions to operator or process manufacturing plan).

If a designed experiment was used to establish controls and settings, indicate
a YES in column. Also include experiment reference number.
Fill in administrative data.

» Part/Process Name — ldentify the name of the process to be monitored.

» Part/Process Number — Identify the applicable process number.

* Used-on Part Number — N/A

» Team Captain is the leader of the team coordinating work activities to
define and control key characteristics/processes.

» Supplier's company name.
» Date is the original release date of the AQS Control Plan.

» Revision Number and Date show the most current version of the AQS
Control Plan and the date of revision.

« List (attach) Boeing part numbers subject to the process (see D1-9000
Sec. 2.4.2-2c).
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1.10 Process Flowchart

What:

» A diagram that shows the sequence of steps in a process.

» Shows customer and supplier boundaries and relationships.

» Shows inputs, tasks/actions and outputs of a process.

» Can be used for business processes as well as production processes.

Why:

» Enhances the common understanding of a process.
» Standardizes and documents reliable processes.
Helps identify measurement points.

Identifies bottlenecks.

» Helps identify sources of variation in the process.

» Helps generate ideas for improvement.

 Aids in identifying waste and nonvalue-added steps.

When:

* Performing a process analysis.

» Establishing any new process, such as the design and manufacture of a new
part.

Documenting the “as-is” process.
Describing the ideal process.

Looking for ways to improve efficiency and effectiveness of an existing pro-
cess.

Looking for appropriate measurement points.
Standardizing and documenting a process.
Solving hardware or administrative problems.

How:

» Define the boundaries of the process:
» Where does the process start?
» What does the process include, and not include?
» Where does the process end?

 Define the suppliers and customers of the process.

» Using symbols such as in figure 1.10.1a, draw a flowchart that identifies the
steps in the process and the activities that must occur. Each activity should be
interconnected to show direction of flow over time. (Other symbols can be
used as well. Specialized symbols are sometimes employed for specialized
tasks.)

« Identify inputs, outputs, conditions, constraints, and tasks for each step as in
figure 1.10.1b




. ® Drill hole
Operation e Fill out form
¢ Design a part

Decision point * Make or buy?
e Send to operation A
or operation B?

Inspection * Part tested by QA
¢ Forms audited
® Buyoff

e For signature
Delay * To be filed

® From supplier

¢ From stores

Storage « Filed documents

® |n stores
Direction of * Move a part to next location
flow ¢ Deliver a document

® Process output

* Process input
Transmission ¢ Data transmission

§ <000

Figure 1.10.1a Flowchart Symbols

When developing a process flowchart to describe the manufacturing operations
required to produce a part (see D1-9000 sec. 2.2.1), each operation should be
numbered to provide traceability throughout the planning and manufacturing pro-
cess. Figure 1.10.2 shows a flowchart for a manufacturing process.

The process step humber is a numerical progression in the process flow. In the
example shown in figure 1.10.2, “060” is the seventh process step.

The operation number is established for each unique process, such as a lathe
operation. In this example, the operation number is “012." Each operation that
affects the key characteristic should be highlighted as a potential area in which to
measure the key characteristic.

Process flowcharts are equally useful for business processes. Figure 1.10.3 shows
what a process flowchart for a business process might look like.

— . —
Inputs —» Activity — Outputs
— —
Tasks Constraints
ARARRRRARNARRAN PAAAAAAAAAAARY
ARARRRRARNARRAN PAAAAAAAAAAARY

Figure 1.10.1b Each Step Should Be Examined for Understanding and Improvement

@ﬂﬂflﬂﬂ

D1-9000-1
65



@J?ﬂf/ﬂﬁ :

Flowchart for a Manufacturing Process
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Figure 1.10.2 Flowchart for a Manufacturing Process
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Figure 1.10.3 Flowchart for a Business Process
Discussion:

Process flowcharts capture collective team knowledge
 To help everyone understand the way a current process works.
 To describe the way a process should work.
To identify areas of waste that need improvement, or even elimination.

 To provide communication between groups so products and processes can
be improved. (During meetings to develop flowcharts, you often hear, “I didn’t
know you needed it that way!”)

One way to begin is by only including major activities in the flowchart. Do not make
the chart overly complex.

The flowchart can be enhanced by listing the inputs and outputs of each step under
the connecting lines.
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The high-level flowchart can also be used to identify major tasks, problem areas,
and areas of variation. This can be done by listing the major tasks, problems, and

sources of variation for each activity, as shown in figure 1.10.4.

Flowchart
input/outputs

!

\4

Tasks

Potential and

actual problems

Sources of

variation

Figure 1.10.4 High-level Flowchart With an Analysis of Major Tasks, Problems, and

Sources of Variation

By circling the major problems in the above diagram, improvement activities can be
identified and prioritized. By examining the sources of variation, action can be
taken to reduce variation. Variation reduction might be accomplished through the
use of statistical control charts or may include performing a designed experiment

(DOE) using the sources of variation identified in the flowchart.

Of course, each box in the flowchart can be expanded into its own detailed flow-
chart, as shown in figure 1.10.5. This process should be repeated as needed.

Flowchart

oo —p —
(major tasks)

—P o0 0

:etail:drt | D{
=

Figure 1.10.5 High-level Flowchart Showing Expansion to More Detailed Flowcharts




1.11 Charts for Initial and Ongoing
Analysis

All processes vary. Variation allows defects, scrap, rework, and waste to occur,
costs to rise, and cycle time to increase.

Data collection and graphical analysis are central to understanding the variation in
a process, and lie at the heart of any process-improvement activity. The charts
discussed in this section are

* Run chart.

* Tier chart.

» Box-Whisker chart.
» Group chart.

* Location chart.

These charts are examples of many of the excellent graphical tools that can be
used in analyzing and understanding the operation of a process. They are simple
and intuitive.

These charts depend upon measuring quality characteristics on products as they
emerge from a process, and then plotting the results. These charts are often used
in the beginning of the process-analysis phase prior to constructing statistical
control charts. Using these charts will help the operator and management under-
stand process behavior.

These charts can help establish a baseline from which improvements are made.
The run chart, in particular, is often used in presentations to management to show
trends and improvements, whether it be for measurements of a quality characteris-
tic or such performance measures as first-pass yield or number of defects per unit
produced.

In general, the tools in this section are focused on organizing and viewing data in
order to gain insight into trends and variation in the measurements taken. These
tools are not adequate to demonstrate statistical stability nor capability. Instead,
the tools presented allow users to efficiently organize and analyze the initial data
from a process prior to establishing control charts.

The first four charts presented may be used as time-ordered charts to display how
much variation a characteristic or parameter exhibits over time. Such a display
gives the user an initial indication of how a process performs before sufficient data
is available to establish control charts. This indication is particularly useful in low-
rate production environments. These tools may also help users to understand if the
data indicates poor process performance even before control charts are available.
This, in turn, allows the user to determine what action should be taken on the
process as soon as possible. Potential actions may include gage studies, adding
tool-clamping fixtures at certain locations, or designing an experiment to better
understand sources of variation.

While the Run, Tier, Box-Whisker, and Group charts may be used for other situa-
tions as well, a primary goal of data analysis is to display key-characteristic varia-
tion over time; that is, from part to part or from unit to unit. The run chart, tier chart,
and group chart are useful in situations where relatively small amounts of data are
taken. Box-Whisker charts summarize and display larger amounts of data.
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In addition to the time-ordered charts, a section on location charts is included. The
primary difference between location charts and the other tools in this section is that
the x-axis on a location chart represents specific locations where data is taken from
the part or tool. Quite often, datasets include several measurements taken from
the same part. Location charts allow users to monitor several locations on a part
simultaneously. As an investigation tool, location charts also allow users to isolate
regions of a part or assembly that are more troublesome and have more variation
than other regions, or to identify nonrandom trends within a part or assembly.

The tools in this section are not intended to include every chart that may be useful
in organizing and analyzing initial measurements from a process or key character-
istic. Users are encouraged to adapt or develop additional tools as necessary to
fully understand the variation and trends in their hardware and processes.




1.11.1 Run Chart

What:

» A graphical display of individual measurements, averages, percentages, or

other statistical values plotted over time.

Why:

» To monitor the level of a process.
» To observe the variation in a process over time.
» To observe trends, cycles, or patterns over time.

» To compare several sources of output (machines, operators, suppliers, mea-

surement locations).

» To compare process performance before and after process improvements.

When:

» Beginning the data collection process for monitoring a quality characteristic

prior to establishing statistical control limits.
» During and after setup.
» Low volumes of products are produced and each part is measured.
* Reporting performance measures to management.

66 I | I | | | I | | I | I | ] | | | |
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Figure 1.11.1.1 Run Chart of Subgroup Averages of Inside Diameter

Centerline
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How:

» Use the same form that will be used for the control chart (see sec. 1.12).

» Record the measurements individually, or by subgroups if the data was
collected as subgroups.

« If the measurements were collected in subgroups, calculate the average of
the measurements for each subgroup (or calculate other statistical values
desired).

» Define the vertical scale to include the expected values.
» The horizontal scale will be subgroup number or time.

* Plot the values on the chart.

» Connect adjacent plot points with a line.

Conditions:

» Only one characteristic is plotted per chart; however, output from several
sources (e.g., machines, departments, suppliers) can be overlaid.

* Plotted points can be variable data, such as individual measurements, sub-
group averages, ranges, and so on, or attribute values such as percentages.

Examples:

Figures 1.11.1.1 and 1.11.1.5 show a Run chart for inside diameters on a part.
Each plotted point is the subgroup average of four measured inside diameters. A
run chart is not a control chart. The control chart for this data is shown in section
1.12.4.

Figures 1.11.1.2, 1.11.1.3, and 1.11.1.4 show data patterns that are often seen in
practice.

The images on the right side of figures 1.11.1.2,1.11.1.3, and 1.11.1.4 show the
distribution that might result from the data in the run charts. (See sections 1.12.14
and 1.13 for more information on interpreting control chart patterns and on histo-
grams.)
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Recurring cycles:
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Figure 1.11.1.2 Run Chart for a Process Having Recurring Cycles

5

Figure 1.11.1.3 Run Chart for a Process Having an Upward Trend

Trends:

Process shift:
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Figure 1.11.1.4 Run Chart for a Process That Has Experienced a Shift
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Run Chart
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Figure 1.11.1.5 A Run Chart of Averages—
Data and calculations are shown.
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1.11.2 Tier Chart f\ moEme

What:

» A graphical display of individual part measurements plotted over time. The
data are collected and plotted as subgroups.

Why:

» To monitor both short- and long-term variability.

» To observe the patterns, variation, and changes in part measurements, both
within the subgroups and between subgroups.

» To compare actual sample measurements against specifications.
» To compare process performance before and after process improvement.

When:

» Beginning the data collection process for monitoring part characteristics.
* Process improvements have been made.

» Monitoring key characteristics before control limits are calculated.
 Trying to gain a better understanding of process variation.

How:

» Use the same form that will be used for the control chart (see sec. 1.12).
- Record the measurements by subgroup in the data-collection box.
- Define the vertical scale to match the expected measurement values.
- Set the horizontal scale to be the subgroup number in time order.

* Plot the individual subgroup measurements, represented as horizontal tick
marks.

» Connect each subgroup’s tick marks with a vertical line, forming a tier.

» Draw the nominal, upper, and lower specifications as horizontal lines on the
chart, if desired.

Tier Chart
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Diameter - fFrT 1 1r1 F e e
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Conditions:

* Only one characteristic is plotted per chart.
» Subgroup size is 2 or greater.

Example:

The Tier chart, figure 1.11.2.2, was used to monitor the inside bore diameter of a
hole. Each tier represents the individual measurements that make up a subgroup.
The length of each tier represents the short-term variability of the boring process.

Interpretation of Chart:

All of the parts measured are within the specifications for inside bore diameter. The
process does not appear to be trending upward or downward, although trends can
be difficult to pick up with a tier chart. Many of the measurements are around the
nominal value of 60. However, there do seem to be parts near the specification
limits, suggesting that close observation (and perhaps process improvement) is
warranted.

Recommendations:
Investigate the possible causes of variation that brings measurements close to

specification limits. Continue to closely monitor the process. Convert to a control
chart as soon as possible, typically after 20 plotted tiers.
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1.11.3 Box-Whisker Chart

What:

» A method that summarizes the features of a set of measurements with a
simple graphical display and five summary statistics. It shows the central
tendency, spread, extreme values, and symmetry of the measurements. The
measurements can be plotted as categories, or when plotted over time, the
data are collected and plotted as subgroups.

e Itis a chart that is similar to a Tier chart; however, instead of plotting each
individual point, the data for each tier is summarized and then charted.

» The middle 50% of the data is represented by a rectangle (or box) on the
chart (the box runs from the 25th percentile to the 75th percentile of the data).
The upper 25% and the lower 25% of the data are represented by lines (the
“whiskers”) extending from the box. The median is also marked. (Note that
other methods for constructing the box and whiskers, which suit the desired
analysis, can be used.)

Also referred to as Box-Plots
e Also see section 1.11.5-4, Location Box-Whisker Chart.

Why:

» To compare measurements taken from two or more categories (part types,
part locations, machines, processes, operators, time periods (subgroups)
and so on).

» To monitor both short-term variability within a subgroup and long-term
variability between subgroups.

» To compare several subgroups, each of which has many measurements or a
distribution of its own.

» To compactly compare several distributions of measurements to each other
on one chart.

 To display several distributions of measurements against specifications. For
example, to compare data from different machines or from different locations.

When:

* In situations where parts have many measurement points per part for a given
feature.

» Measurements of more than 10 items are available.
* Monitoring measurements before control limits are calculated.
» Comparing several distributions to one another and to specification values.

How:

 Define the vertical scale to include the expected measurement values.

» The horizontal scale will often be subgroup number in time order or other
groupings of data, such as part numbers, tool numbers, machines, or loca-
tions on the part.

» For each subgroup or category of data to be represented by a box-whisker
bar on the chart:

» Sort the data from smallest to largest




» Determine specific summary points for the data, namely
a. Minimum.

b. 25th percentile, which is the data point that has 25% of the
data below it.

c. Median, also called the 50th percentile, which is the value that has
half of the sorted data below it and half above it.

d. 75th percentile, which is the data value that has 75% of the data
below it.

e. Maximum.

* Plot the five values obtained above on a tier chart, represented as tick
marks.

» Create the box. Draw a rectangle on the chart so that the lower edge of
the rectangle is the 25th percentile and the upper edge is the 75th per-
centile. Draw either a diamond or a horizontal line through the rectangle
at the median value.

 Create the whiskers for the subgroup. There are different options for

creating whiskers on the chart. Different software may use different rules.

Below is (a) an easy option and (b) a different, more complicated, option.
» Many different options are available for forming the box and whiskers,
depending upon the desired analysis.
Method A:
» Connect the maximum and minimum values to the box with vertical lines.

Method B (sometimes used in software packages):

 Calculate the interquartile range, which is the 75th percentile minus the 25th
percentile.

» Determine the extreme whisker values: the upper end of the upper whisker is
the largest measured value less than the value given by the 75th percentile
point plus 1.5 times the interquartile range. The lower end of the lower whis-
ker is the smallest measured value greater than the value given by the 25th
percentile point minus 1.5 times the interquartile range.

* Mark the whisker values on the chart and connect them to the box with a
vertical line.

» Values beyond the whisker values, if they exist, are plotted individually as
small circles beyond the whiskers.

Conditions:

* Plot only one characteristic per chart.
» Subgroup size is 10 or greater; some prefer 20 or greater.
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Example:

Data from eight part types are presented in the Box-Whisker chart shown in figure
1.11.3.1 (using method B). Each part type has between 38 and 55 data points per
part. That is, measurements are taken at 38 to 50 locations on each part. The
specification limits in this situation are 8 and -8. Each bar represents a distribution
of data for each of the eight parts. The whiskers were drawn using Method B as
described above.

The histogram for part 1 is shown in figure 1.11.3.2, along with the box-whisker bar
below it. The histograms for all eight parts are shown in figure 1.11.3.3, for com-
parison with the box-whisker plots in figure 1.11.3.1.

Interpretation of Chart:

As displayed in figure 1.11.3.1, parts 1, 2, 3, and 6 have locations that exceeded
the specification limits. Parts 2 and 6 have several locations that fell low in the
specification range when compared to the rest of the data within each part. This is
shown by the several circles located below the box-whisker bar for both parts 2 and
6. Part 3 seems to have a much wider distribution than the other seven parts.

Parts 4, 5, 7, and 8 all meet the specification limits quite well. This gives an indica-
tion that the process can perform to the specification limits. This process, however,
does not seem to perform consistently within the specification range from part to
part.

Recommendations:

In general, further analysis should be performed to better understand why some
parts displayed have so much variation. Location charts and other investigation-
type tools could prove useful in understanding trends within each part that may not
be solely random variation.

Specifically, parts 2 and 6 should be analyzed further to determine if the same
locations on each of those parts were low in the specification range. A Location
Run chart (section 1.11.5) might be useful to check for that. In addition, parts 2
and 6 should be evaluated to determine if they were processed in a similar fashion
that was different from the other six parts. Similarly, part 3 should be investigated
to determine if some additional factor affected only that part which would increase
its within-part variation. Finally, parts 4, 5, 7, and 8 should be investigated to
determine the specific process followed that yielded such good results, so that the
process can be standardized close to that method.
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Figure 1.11.3.2 Histogram and Associated Box-Whisker Chart for Part 1
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1.11.4 Group Chart

What:

» A chart used to display time-ordered data for a feature measured at two or
more locations on one part or from multiple process streams (e.g. machines,
spindles, operators). The measurement data from the different locations or
process streams are displayed on one chart rather than several charts.
Group charts enable the user to look for patterns, trends, and relationships in
the locations or process streams over time.

Why:
» To monitor the output of several process streams or measurement locations
simultaneously.
» To observe the variation in the processes or locations over time.
» To observe trends, cycles or patterns over time.

» To compare several sources of output (machines, operators, measurement
locations, processes).

When:

» A key quality characteristic is produced by several process streams (e.g.,
depth of similar grooves cut by different spindles).

» A key quality characteristic or feature is measured in several locations (e.g.,
contour along a wing flap at several locations, thickness of a material at
several locations).

1.034

1.020
C
° eB ° oC
1.006 - @B B ecC oB c
Depth
0.992 -
0.978
0965 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Subgroup

Figure 1.11.4.1 Group Chart Example—
The identifiers A, B, C, and D can represent different process streams (e.g., machines) or
different measurement locations on the part. All measurements are shown but only the
largest and smallest measurements are joined by lines.
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How:

» Define the characteristic to be measured and its measurement locations or
process streams.

» Determine the subgroup size and sampling frequency.
» Take measurements and record.
» For subgroups of size 1:

1. For each part, plot the individual measurement for each location or
process stream.

2. Label each point with the location or process stream identifier.
3. Select one of four options for connecting the points:

a. Connect the plot points having the largest (and smallest) values,
then connect the points having the second largest (and smallest)
values, and so on. (When there are several measurement locations
or process streams, one option is to display only the largest and
smallest values, with other points unconnected or left off the chart
entirely.)

b. Connect the points across time, corresponding to each location or
process stream.

c. Connect all the points for a given part/subgroup in tier chart format.
d. Produce a box and whisker for each part/subgroup.
4. Visually examine the graph for patterns.

5. Apply a test (such as the Friedman test) to detect statistically significant
patterns in the data.

6. Prepare a variability chart (Moving-Range chart) by performing steps 1
through 5, using moving-range values for each part location.

» Generalize steps 1 through 6 above if subgroup size is greater than 1, using
averages and ranges rather than individual measurements and moving
ranges.

« If patterns are identified, take corrective action. It may be helpful to calculate
the Friedman statistic and its corresponding p-value to help identify any
patterns in the data. Consult a book on nonparametric statistics for informa-
tion of the Friedman test.

Conditions:

» The characteristics to be monitored are similar (that is, they are of the same
type and units of measure). They are the same feature but measured at
selected locations or from selected process streams.

* When the feature is a location, the measurements are taken at the same
locations on each part.

» When the feature being monitored is from multiple process streams, the data
from the various sources should be collected at the same time.

» The measurements should all be on the same scale, or mathematically
transformed to be on the same scale.

» The measurements taken from the different locations or process streams can
be correlated, but the measurements from part to part should be statistically
independent of each other. (This condition ensures the validity of statistical
tests such as the Friedman test.)




Location Measurement Example:

Suppose flange angle is measured at three locations along the length of a spar. A
Group chart showing the maximum and minimum measurements for each part is
shown in figure 1.11.4.2.

Interpretation of the Chart:

Because data corresponding to the different locations for each spar is measured,
this chart shows how the data is spread between the largest and smallest values.
For example, spars 18 and 37 display large ranges of values.

The Group chart also shows that location 3 has the largest value on 24 out of the
39 spars. This would indicate that location 3 has a tendency to be high compared
to the other locations and should be investigated.

Another observation is that the largest and smallest values tend to follow each
other across the subgroups, the major exception being subgroup 18.

There may very well be different causes at work in producing these effects. Further
investigation might include use of the Hotelling T2 Multivariate control chart or the
Spline IX-MR chart.

Associated Analytic Tools

In order to identify significant changes in the process between parts, it is recom-
mended that the Group chart be supplemented with control charts, such as the IX
and MR charts. When using the IX-MR charts, the measurements for similar
characteristics are averaged (e.g., across locations) and then plotted, treating each
average as an individual IX plot point. These charts can be used to monitor piece-
to-piece or batch-to-batch variation. See section 1.12.9.2, the Three-Way chart.

Process Stream Example:

Suppose three spindles cut three separate grooves in a part and that the character-
istic of concern is depth of the groove. It is desired that all three grooves be as
identical as possible and conform to engineering specifications. A Group chart can
be used to identify patterns in the process. For example, is there a drift or shift in
the process, or is one or more spindles behaving differently that the others? An
example is shown in figure 1.11.4.3.

In interpreting this chart it can easily be seen, for example, that spindle 3 seems to
often make deeper grooves than the other spindles. With this data in hand the
operator can take informed corrective action.
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Figure 1.11.4.2 Group Chart for Multiple Measurement Locations—
In this case only the largest and smallest location values for each part are plotted. The
numbers refer to measurement locations. It is sometimes valuable to plot all location
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Figure 1.11.4.3 Group Chart for Multiple Process Streams—
In this case only the largest and smallest values for each subgroup of parts are plotted.
The numbers refer to spindle number. It is sometimes valuable to plot all spindle values.




1.11.5 Location Charts

What:

 Location charts are used to display data from two or more parts when a
feature is measured at several locations on each part. The charts are location
ordered rather than time ordered.

» For any given part, measurements are taken at different locations and points
are plotted horizontally, corresponding to the different locations being mea-
sured.

» There are four types of Location charts described in this section: (1) the
Location Run chart, (2) the Location Tier chart, (3) the Location Variability
chart and (4) the Location Box-Whisker chart.

Why:
» To enable the user to look for patterns, trends, and relationships among the
locations for a group of parts.

» To observe the variability in the measurements at each location, as well as
other distributional features in the data.

» To enable users to identify problem locations and to be able to identify loca-
tions needing variation reduction or better targeting on hominal.

When:

» A key quality characteristic or feature is measured at several locations (e.qg.,
contour along a wing flap at several locations, thickness of a material at
several locations).

How:

* Define the feature to be measured.
 Define the locations on the part where the feature will be measured.

» Determine the frequency with which a part is sampled and measurements
taken.

» Take measurements on the part at the different locations.

» Plot the measured value for each location along the x-axis of the chart and
connect the points horizontally for the Location Run chart, or vertically for the
Location Tier chart. For the Location Box-Whisker chart, the distribution of
the data at each location is shown.

 For the Location Variability chart, collect data from at least 20 parts, and then
compute the average (X) and standard deviation (s) for each location. Then
compute the natural tolerance limits (see below) and plot and connect the
points across locations.

Upper natural tolerance limit = UNTL = X + 3s

Lower natural tolerance limit = LNTL =X - 3s

» The natural tolerance limits can also be added to the Location Box-Whisker
chart.

 Since the plotted data represent individual measurements, the specification
limits can also be drawn on this chart.

 Visually examine the graph for patterns and relationships.
« If patterns are identified, take corrective action.
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Conditions:

* All measurements on the chart involve the same feature.
* Measurements from one part to another are independent.
» The same locations are measured for each part.

* Interpretation of the Location Variability chart is enhanced when the data is
normally distributed at each location.
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1. Location Run Chart

What:

» The Location Run chart monitors each part by collecting measurement data
at each location and horizontally connecting the data points for each part
across locations along a linear axis.

Why:

» To compare a small number of similar parts to one another to determine
problematic locations on the parts.

* To observe the frequency of outliers within a part compared to specifications.

Example:

An example Location Run chart for an upper flange angle is shown in figure
1.11.5.1. The plotted values are deviations from target.

0.8

0.6
USL

0.4

0.2

0 Target
Degrees
from -0.2

Target

-1.0 LSL

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Location on Part

Parts: m13 +14 <15 A16 x17  y18

Figure 1.11.5.1 Location Run Chart—
Each line shows flange-angle measurements for one part at 15 locations

Interpretation of the Chart:

In this example, 24 parts were produced. For illustration, however, only parts 13
through 18 are plotted and compared to the specification limits and to one another.
The chart indicates that the parts seem to be consistently off target at all locations.
There also appear to be two separate groups, with parts 13, 17, and 18 forming
one group closer to the target value. There may be an unusual circumstance for
this outcome that should be investigated. (It is also possible that this may actually
be random even though there is an appearance of two groups.) D1-9000-1

There is evidence of an outlier on part 15 at location 9 that should be investigated. 89
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2. Location Tier Chart

What:

» The Location Tier chart monitors measurements by plotting the data at each
location for a set of parts, and connecting the data values for a given location
with a vertical line.

Why:

» To observe the distribution of part measurements at each location.

» To observe the frequency of outliers at each location and to compare the data
with the specification limits.

Example:

An example Location Tier chart for an upper flange angle is shown in figure
1.11.5.2.
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Figure 1.11.5.2 Location Tier Chart for Flange-Angle Measurements on 24 Parts—
The horizontal tick marks are flange-angle measurements at each location.

Interpretation of the Chart:

This chart was developed using the data from all 24 parts. The chart provides
evidence of extreme values at locations 3, 6, 8, 9 and 14. These may have an
assignable cause that should be investigated. The variability of the process at
location 9 seems to be larger than at other locations. Overall, the process is func-
tioning at the low end of the specification range and is off target.

Locations 1, 2, 3, 8, 14 and 15 indicate there may be two separate groups of data,
suggested by the bimodal distributions. However, it should be noted that this needs
to be viewed carefully because Tier charts and Location charts may give the ap-
pearance of bimodality fairly frequently, when the data are actually random.




3. Location Variability Chart
What:

» The Location Variability chart estimates process average and variability for
each location. It is the same as the Location Run chart, with the addition of
location averages and natural tolerance limits for each location.

Why:

» To provide an overall picture of the process variability compared with the
specification limits for the entire part.

Example:

An example Location Variability chart for an upper flange angle using 13 parts is
shown in figure 1.11.5.3.

0.6 [
USL
0.4
0.2
0 Target
Degrees
from -0.2
Target
-0.4
0.6 X
-0.8
- LSL
-1.2 £ | | | | | | | | | | | | | |

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Location on Part

Figure 1.11.5.3 Location Variablility Chart for Flangle-Angle Measurements on 13 Parts.
Interpretation of the Chart:

This chart shows the flange-angle deviation from target at each location for each
spar. The values for each spar are connected across locations. In addition, the
chart shows bold lines representing the average and three standard deviation
values (upper and lower natural tolerance limits) across locations.

The chart allows the observer to see the average and spread of the data at each
location, to follow each spar across locations, to observe the 6s values (distance
between the upper and lower natural tolerance limits) at each location, to compare
the 6s values to the width of the specification limits, to observe the degree of
centeredness of the process, and to detect other unusual behavior.
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Locations 3, 6, 9 and 14 have one or two spars with unusual values. These spars
have increased the variability at each of those locations, as indicated by the widen-
ing of the natural tolerance limits. It would probably be of value to investigate the
reasons for this occurrence.

Location 9 appears to have both a general shift in average, and greater variability in
angularity values. This occurrence may deserve investigation.

The width of the natural tolerance limits at the various locations is generally nar-
rower than the width of the specification limits, so the Cp values, by inspection,
appear to be generally good. However, since the process is off target, correspond-
ing Cpk values would be somewhat lower (see section 1.14).

It can also be seen that the averages at the different locations are consistently low.
This observation invites a change to the process to bring the process closer to
nominal.




4. Location Box-Whisker Chart
What:

» The Location Box-Whisker chart monitors the distribution of measurements by
location for a set of parts (see section 1.11.3). It is similar to the Location Tier

chart except that rather than showing each measurement at each location, it
provides a distributional summarization of the data.

Other statistics, such as natural tolerance limits, can be added to the chart at each
location to provide a visual view of process capability (see figure 1.11.5.5).

It is also possible to set up IX-MR and X-bar/R forms of the Location Box-Whisker
chart. Instead of adding natural tolerance limits, control limits from the control
charts for each location are placed on the chart at each location, along with a
highlighted dot at each location identifying the measurements on the last part. This
would identify whether the last part was out of control at any location (see figures
1.11.5.6 and 1.11.5.7). Measurements on the last few parts could also be placed
on the chart using different symbols to observe possible patterns. The typical
statistics that are plotted for box plots are shown in figure 1.11.5.4.

Why:

» To provide a summary of the distribution of measurements and associated
statistics for each location.

» To compare process behavior including part averages and variation across
locations.

» To show capability histogram data or control chart data and information for
many locations in a condensed and readable format.

VvV <—— Avg +30

() <— ucL
~—— Maximum measurement
<«——— 75th percentile
—<—— Median or Average
-<—— 25th percentile
—<—— Minimum measurement

<> ~—— LCL
A <—— Avg - 30

Figure 1.11.5.4 Typical Values for Box-Whisker Plots for Location Charts—
Other values can be used, depending upon the situation (for example, the average of the
measurements could be used rather than the median). Triangles are used for upper and
lower natural tolerance limits and diamonds are used for upper and lower control limits
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Example:

An example Location Box-Whisker Capability chart for upper flange angle, using
the same 24 parts as in figure 1.11.5.2, is shown in 1.11.5.5. The bottom and top of
the boxes are identified by the 25th and 75th percentiles of the data. That is, 25%
of the data is below the 25th percentile and 75% of the data is below the 75th
percentile, so the box contains 50% of the data. The median (50th percentile) is
shown by the horizontal tick mark in the box. In this example, the horizontal serifs
on the ends of the whiskers mark the maximum and minimum measurement val-
ues. The triangles, in this case, represent the upper and lower natural tolerance
limits (they are 6s apart). The Box-Whisker chart is discussed in section 1.11.3.

Figures 1.11.5.6 and 1.11.5.7 show similar charts but with diamonds representing
the upper and lower control limits for the fifteen IX-MR charts for the fifteen loca-
tions. The Location Box-Whisker IX-MR charts summarize the actual IX-MR data
found in the fifteen pairs of IX-MR control charts.

Interpretation of the Chart:

In figure 1.11.5.5, the whiskers for locations 3, 6, 8, 9 and 14 show that there are
extreme values present. These should be investigated for special causes. It can
also be seen that the interquartile boxes overlap from location to location except for
location 9. This could indicate that the processes for each location are consistent,
except for location 9. For location 9 the spread is greater than the other locations,
but on the other hand, the distribution of measurements is closer to target than the
others. In general, it can be easily seen that the distributions of measurements for
all the locations are consistently off target on the low side. An investigation should
be conducted to identify the reasons so that action can be taken to correct the
situation.

Location 6 N 24

Mean -0.53
Std Dev 0.17
Cp 1.47
Cpk (case 5)0.46

50 -

40 -

30 -
Percent

] Tariget UsL
|
0.6 ch
-1.13 -0.83 -0.53 - X .
- Aonifie 0.07 0.38 0.68 USL
0.4
v
0.2 [
Degrees T
From arget
Target o2 v v V v v v
v Vv v V v
-0.4
-0.8
A a
A A A
1.0 7AN 7at LSL
A A
i 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Location

Figure 1.11.5.5 Location Capability Chart—
Box-Whisker chart for flange angle measurements on 24 parts with natural tolerance limits
for each location marked as triangles.




Location 6 IX Chart
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Figure 1.11.5.6 Location Box-Whisker IX Chart of Flange Measurements With
IX Control Limits for Each Location—Diamonds are control limits from IX control charts for
each location, dots are measurements taken on the last flange, and the top and bottom
cross bars are the maximum and minimum flange measurements.

Location 6 MR Chart
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Figure 1.11.5.7 Location Box-Whisker MR Chart of Moving Ranges With MR Control
Limits for Each Location—Diamonds are control limits from MR control charts for each
location, dots are moving range values from the last flange measured and its predecessor,
and the top and bottom cross bars are the maximum and minimum moving ranges.
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1.12 Statistical Control Charts

What:

* A statistical control chart is a line graph of the measurements of a product or
process over time that has statistically based control limits placed on it.

» The points that are plotted on a control chart may be the actual measure-
ments of a part characteristic, or summary statistics from samples (sub-
groups) of parts taken as they are produced over time.

» A control chart has control limits based upon process variation and a
centerline representing the average of all the measurements used to
construct the control chart.

The statistical control limits define the boundaries of the expected variation of
the process when only common-cause variation is operating, and are placed
three standard deviations above and below the centerline.

* Summary statistics often plotted include the subgroup average, subgroup
range, subgroup standard deviation, percent defective, average number of
defects per unit, and so on.

» Key characteristics are examples of process output that can be monitored by
statistical control charts.

» All processes have and exhibit variation. Variation makes defects and poor
quality possible—not something we want. Statistical control charts moni-
tor and display the variation in process output and can be an important tool
for product and process improvement.

» Several types of control charts are discussed later in this section.
Why:

 To display and manage variation in process output over time.
To identify when a process changes.
 To provide a basis for improvement.

To distinguish special from common causes of variation (that is, when to
correct sporadic problems or when to change the process).

« To help assign causes of variation.

Upper control limit

Lower control limit

Time —&

Figure 1.12.1
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To identify process problems on an ongoing basis.
To tell the operator when not to take action and just let the system run.
To control upstream processes contributing to the production of a product.

To reduce process variation and prevent defective output from being pro-
duced.

To eliminate waste and reduce loss.

When:

Measuring key characteristics of a product or process.

Moving from an inspection-based system to a prevention-based system.
Stabilizing a process to make it more predictable.

Improving the capability of a process early on.

Assessing and verifying the effectiveness of design or process changes.

How:

Define the key characteristic or quality characteristic to be measured.

Define where in the process the key characteristic will be measured. It should
be at the earliest possible point in the manufacturing process where the
characteristic can be measured.

Select which control charts to use.

Determine subgroup size and frequency of measurement.
Take measurements.

Plot measurements or summary statistics on the chart.
Connect the plot points.

After at least 20 plot points, calculate the centerline and control limits (the
actual number of plot points depends upon the circumstances).

Identify any out-of-control points.
Analyze for special causes of variation and remove them.

Remove subgroup data corresponding to any out-of-control points from the
calculation of the control limits.

Add a corresponding number of plot points and recalculate the control limits
using data from all in-control plot points.

Extend the control limits into the future. Do not recalculate the control limits
until significant and identifiable process changes occur. Do not change the
control limits continually as new data is added.

Note: The operator should be collecting the data and monitoring the control

chart in real time.

Note: Control chart information must be recorded on an AQS Control Plan or

equivalent. This would include where measurements are to be taken,
the type of control chart used and the sampling frequency.




1.12.1 Control Chart Selection

The most common control charts used to measure variation are listed in figure
1.12.1.1 and further described in sections 1.12.4 through 1.12.13. The table is not
a comprehensive list of tools. For certain processes, other charts may be accept-
able. Figure 1.12.1.2 shows a diagram that can be used to help choose the right
control chart.

The following guidelines should be applied during the selection of any control chart:

» When using variable data, both the average and variability of the process
must be monitored.

» The control limits must be based on the natural variability of the process (not
specification limits).

Subgroup
size

Traditional X One part number 2108, 1124
and R High-volume production rate 3 to 5 preferred
One characteristic charted
Traditional X Same as X and R 2 or more 1125
and S
Individual X- One part number One 1.12.6
Moving Range One characteristic charted
(IX-MR) Low-volume production rate
a) Target X and R, Short run applications a)2to8 1.12.7
b) Xand S, Multiple part numbers charted b) 2 or more
c)and IX-MR One characteristic per part c) One
© Similar variability on all parts
'% Exponentially One characteristic charted One or more 1.12.8
'S | Weighted Sensitive to shifting process average
‘>5 Moving Computer should be used
Average
Three Way One or more part numbers One or more 1.12.9
Multiple measurements made on the
same feature per part
Similar variability on all parts
One part number One part 1.12.9
Spline IX-MR Multiple measurements made on the
same feature per part
Computer software needed
One or more part numbers Usually one 1.12.9
Hotelling T2 Multiple measurements of one feature but can be
per part or multiple features per part more
Computer software needed
p Very high-volume production rate At least 1.12.10
Proportion One type of unit 30 but
defective Constant or varying subgroup size can vary
np Very high-volume production rate At least 1.12.11
2 | Number One type of unit 30and
3 defective Constant subgroup size constant
=
Elc Many types of defects possible One unit or 1.12.12
< | Counting defects One type of unit more, but
on a unit Constant subgroup size constant
u Many types of defects possible One unit or 1.12.13
Average number One type of unit more, but can
of defects per unit Constant or varying subgroup size vary

Figure 1.12.1.1
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Control Chart Decision Tree
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defects 3
g o
Constant n coru = 02
ELDS
L C 2=
3T QP
Counting Q95
np or
defectives Constant n ® P P % oL AEJ
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n = subgroup size

Note: The Exponentially Weighted Moving Average (EWMA) chart can be applied
to the data for any of the single characteristic variable control charts.

Figure 1.12.1.2 Control Chart Decision Tree
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1.12.2 Sampling

A major contributor to the effectiveness of a control chart lies in how the data is
collected. The box below provides basic guidance for collecting data samples
(subgroups).

Control Chart Sampling Guide

1. The collected data must represent the production output that best character-
izes manufacturing conditions.

2. The subgroup size should be determined and held fixed, if possible. For
variable control charts, small samples are adequate, typically ranging from
three to five measurements. Very low production rates may require subgroups
of only one measurement. For attribute charts, larger samples are required,
and subgroup sizes can sometimes vary.

3. Measurements making up the subgroup must be independent of each other
but be collected over a relatively short amount of time so the subgroup is
homogeneous in nature. This will help maximize the chance of identifying
subgroups subject to special causes.

4. The subgroups should be collected such that they are independent of each
other and allow for variation to occur between subgroups.

5. Subgroups must be taken and recorded in manufacturing sequence
(chronological order).

6. Subgroups should be collected as frequently as is economically feasible, in
order to control the risk of unnoticed special causes and product rejections.

7. When control is achieved and capability exceeds minimum requirements, the
sampling frequency can be reduced. This applies primarily to variable control
charts.

Above all, data collected from a process must represent the manufacturing condi-
tions encountered in everyday production. This simply means that the process is
operating in the same manner while data is being collected as when no measure-
ments are taken. It also means that the measurement system uses standardized
devices and consistent methods, and resulting measurements are maintained in
manufacturing sequence. Data within and outside specification limits should be
included. Data taken from resampled, retested, reworked, or setup parts should be
avoided, and in particular should not be used in control limit calculations, since the
data fail to reflect the variability inherent to the normal production process.

When using variable data, three to five sample measurements are typically grouped
together into what is known as a subgroup . The number of sample measurements
in each subgroup is called the subgroup size . It is advisable, though not always
required, to choose a fixed subgroup size.

In addition to the subgroup and its associated subgroup size, consideration must be
given to the sampling frequency . The sampling frequency is the rate at which
subgroups are collected, defining how long one should wait between subgroups
(see figure 1.12.2.1). The selection of the sampling frequency must ultimately rest
with the process owner, but there are many factors to consider.

Often, it is better to sample frequently with small subgroup sizes rather than infre-
guently with large subgroup sizes. Infrequent sampling leaves the process at risk for
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| Sample

frequency Production parts
I |
Subgroup 1 | | |
°l e o: Subgroup 2 I Subgroup 3 :
Part . R . 0 ° .o ) ° |
Measurements N . o o . o
. ° ° * | o |
* |
. | ° ° |
o | o |

Production Order
Sampling Strategy (Time) >
Small subgroups taken
frequently

Measurements within a
sample (subgroup) collected avg. O r
over a short time period _1

Subgroup Statistics
—  subgroup total

~ no. in subgroup subgroup size = 3
sample rate = 30%

r = max. - min.

Figure 1.12.2.1 Process Output Sampled in Production Sequence.
Note: It is not required that the parts used in a subgroup sample be
consecutively produced

longer periods of time. Changes in the process may go undetected, resulting in
defective products getting into production or assembly. The benefits of increasing
the subgroup size beyond five are usually small relative to the cost of data
collection.

Traceability should be maintained for changes in raw materials, part numbers,
setups, operators, maintenance, or any other condition that could introduce signifi-
cant variability. Notes are often placed on the control chart.

Initial Sampling of a Process

Before calculating statistical control limits, adjustments can be made to center the
process or reduce process variation. The parts used in preproduction, the setup
process, or rework, however, are not representative of normal production and
should not be used in the control limit calculations. When the adjustments are
finalized, parts will become “representative” of a process. Only then will the study
of the process variability be meaningful. (It may be of value to plot setup parts on
the control chart even though they are not used in control limit calculations.)

In order to quickly establish control limits for new control charts, subgroup data
should be collected as rapidly as possible, while ensuring the data reflects the
natural variation of the process. For low-volume processes, this generally means
sampling 100% of the available process output. It is recommended that sampling
be conducted at a high frequency until the process is in control and capable.




Reduction in Sampling Frequency for Variable Data

The economic penalties for nonconformance, along with such things as production
volume, frequency of being statistically out of control, process capabilities (Cp and
Cpk), and measurement costs should support decisions regarding sampling fre-
guency and the potential reduction in sampling frequency as processes improve.

Common Problems in Sampling

Producers may often encounter situations in which the general sampling methods
described above are not sufficient to correctly characterize the process variation.
This often occurs when assumptions regarding data collection or subgrouping are
not or cannot be adhered to (for example, when the measurements are not inde-
pendent of each other). In these cases, errors in subgrouping can result in control
charts that may lead to incorrect conclusions concerning process control as well as
unneeded actions and expense. The following paragraphs provide some typical
examples of problem situations.

A common situation occurs when manufacturing parts in relatively small lots on a
periodic basis. The variability within a given lot manufactured over a short time
period is often relatively small. The corresponding range (R) chart will show little
variation. However, because of differences in setup, operators, material, or other
influences, the “between batch,” or “batch-to-batch” variation may be significant. A
heat-treat process, for example, could often exhibit lot-to-lot variation. Variation of
parts within a given heat-treat lot is generally much less than the variation between
lots (this may cause control limits on an X chart to be too tight and therefore in-
crease the number of false alarms).

With a finishing process, the chemical bath changes as a result of use and mainte-
nance. If subgroups are collected over a short time period, neither the variation
within a subgroup, nor the variation between rapidly collected subgroups, would
adequately account for the natural process fluctuation. In such cases, part of the
solution to the problem is to ensure that enough time passes between collection of
subgroups to allow the process to vary naturally.

Part 1 | | | |
+ t t 1
Subgroup 1 x1 X2 x3 x4
Part 2 E
5 f f 5
Subgroup 2 x1 X2 x3 x4
°
[ ] | | | |
* ) f f D
x1 x2 X3 x4

Figure 1.12.2.2 Several Thickness Measurements Taken on Each Part, Showing
Improperly Defined Subgroups for X - R Charts
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Another common subgrouping error occurs when similar characteristics on the
same part are grouped inappropriately (a single feature measured at several
locations). In figure 1.12.2.2, data collected from the same part is used as the
basis for forming a subgroup. Typically, variation within one part is likely to be small
relative to the variation between parts. Forming subgroups in this way can result in
the control chart erroneously appearing to be out of control more often than is
correct (the control limits will often be too tight).

In each of these examples, care should be taken that the sampling approach does
not misrepresent actual manufacturing variability. In addition, control charts may
need to be set up to monitor the “between-batch” or “between-part” variation sepa-

rately from the “within-batch” or “within-part” variation (see figs. 1.12.2.3 and
1.12.2.4).

Ptz — o
:{I]rz T __ —
— — & —=
‘ — 0o =
@ i K p— -
Thickness I
Measurements Part 3 O
. / Average -
g‘ﬁ == —_—
Part 1 — —
Time —>»

Figure 1.12.2.3 Tier Chart Showing That Variability Within Each Part Is Substantially
Less Than Variability Between Parts (See sec. 1.12.9.2)

Part 2 N J—
-y YZ mox - __ —
oc|— - ol
= _ O =
Thickness DEEF ==X —
Measurements Part 3 O
RSt == —
Part 1 — QO
Time —>»

Figure 1.12.2.4 Moving Ranges of the Part Averages Capture Variation Between Parts
(See sec. 1.12.9.2)




For processes in which subgroup variation (within batch or part) does not represent
total manufacturing variation, the variation between subgroups (figure 1.2.2.4)
should be used to calculate the control limits. In such cases, using moving ranges
on the MR chart may be an alternative to subgroup ranges on the R chart. In these
cases, the repeated measurements in a batch or part are often averaged and
considered as a subgroup of size 1 for an IX chart. In this case, the IX and MR
charts would be used to monitor the (averaged) batch-to-batch measurements and
variation, while the R chart would be used to monitor the within-batch variation.
See section 1.12.9.2 for further discussion and an example.

Another example of inappropriate subgrouping involves treating each measurement
location from a single part as an independent subgroup of size 1 and plotting each
measurement sequentially. This arrangement is tempting, because it seems to
develop a mature control chart quickly, supporting early computation of control
limits. The chart selected is usually an Individual X chart, using moving ranges as
the basis for measuring variability (see fig. 1.12.2.5). Because between-part
variation and within-part variation are being combined, the control limits are incor-
rect. The resulting moving ranges can appear to form spikes when, in fact, no
special causes may be present.

The need to take multiple measurements on the same part and to plot them on a

single control chart commonly occurs in manufacturing. Generally the solution to

this problem is found in a class of charts called multiple characteristic or multivari-
ate charts. Methods to analyze and control multiple characteristics are covered in
sections 1.11 and 1.12.9.
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A Common Problem in Sampling

Bar Thickness
Individual X Chart (Using MR)

File: | units:
CL: 586.8 [ LcL: 2250 [uct: vass6

1000
UCL

800

600 X

400

LCL
200

Bar Thickness
MR Chart

File: |_Units:
CL. 114.4 [Lct 0o [ucL: 3738

600
480
360 UCL

240

Moving Range

120 MR

0 LCL

Figure 1.12.2.5 Incorrect Use of IX-MR Chart From Data of Figure 1.12.2.3—

For these control charts, each sequential set of four plot points is taken from a single part.
All three “out-of-control” points are from the first location on their respective parts
showing that part-to-part variation is often greater than within-part variation. Observing the
within-part and the part-to-part variation is possible and is useful; however, these are not

proper statistical control charts for this application.
See Section 1.12.9 for other approaches.




1.12.3 Control Chart Symbols and
Notation

c Number of defects in a unit. The plot point on a ¢ chart.

D3, Dy, Tabled constants used in control limit calculations for variable

Ay, Az, B3, By control charts.

k Number of subgroups taken (number of plot points).

LCL Lower control limit.

MR Moving range. The positive difference between each successive individual
measurement. The plot point on a Moving-Range chart.

M_R (MR-bar) Average of the moving ranges. The centerline on a Moving-Range
chart.

n Subgroup size.

N Total number of individual measurements.

np Number of defectives in a subgroup. The plot point on an np chart.

p Proportion defective in a subgroup. The plot point on a p chart.

R (range) Difference between the largest and smallest measurements within a
given subgroup. The plot point on a Range chart.

R (R-bar) Average of the subgroup ranges. The centerline on a Range chart.

S Standard deviation of a subgroup.

'S(S - bar) Average of subgroup standard deviations. The centerline on an S chart.

o Standard deviation of a population.

b2 Sum of. Forexample, 2X=X{ + X5 +...+ X,

Targetf X minus target value (see Target chart).
The plot point on a Target X chart.

Targeti Average of the sample targetYs. The centerline on a Target?chart.

T2 Hotelling's statistic. Plot point on Hotelling T2 multivariate control chart.

UCL Upper control limit.

u Average number of defects per unit. The plot point on a u chart.

X Individual measurement. The plot point on an Individual X chart.

X (X-bar) a) Average of the individual measurements. When X is the average of the

measurements in a subgroup it is the plot point on an X chart.

b) The centerline on an Individual X chart.

? (X-double bar) Average of the subgroup averages. The centerline on an X chart.

Figure 1.12.3.1
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Subgroup Standard X, R chart Standard )_(, S chart

size n Az D3 D, Az B3 B, Bs Be
1 2.660 0

2 1.880 0 3.267 2.659 0 3.267 0 2.61

3 1.023 0 2575 1.954 0 2.568 0 2.28

4 0.729 0 2.282 1.628 0 2.266 0 2.09

5 0.577 0 2115 1.427 0 2.089 0 1.96

6 0.483 0 2.004 1.287 0.030 1.970 0.03 1.87

7 0.419 0.076 1.924 1.182 0.118 1.882 0.11 1.81

8 0.373 0.136 1.864 1.099 0.185 1.815 0.18 1.75

9 0.337 0.184 1.816 1.032 0.239 1.761 0.23 1.71

10 0.308 0.223 1.777 0.975 0.284 1.716 0.28 1.67

11 0.285 0.256 1.774 0.927 0.321 1.679 0.31 1.64

12 0.266 0.284 1.716 0.886 0.354 1.646 0.35 1.61

13 0.249 0.308 1.692 0.850 0.382 1.618 0.37 1.59

14 0.235 0.329 1.671 0.817 0.406 1.594 0.40 1.56

15 0.223 0.348 1.652 0.789 0.428 1.572 0.42 1.54

Figure 1.12.3.2 Table of Constants for Variable Data Control Charts




1.12.4 X and R Charis

What:

« Control charts for variable data used to monitor the behavior of the process
average X and range R of a single measurable characteristic.

When:

» See section 1.12.
* In situations where parts are produced frequently or in high volume.

Why:

» See section 1.12.

How:

By plotting subgroup averages and ranges on separate charts and adding the
centerline and control limits to each chart. These charts are referred to as the

X (pronounced X-bar) chart and Range (or R) chart, respectively.
» See section 1.12 for details.
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X

Range
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Conditions:

» Subgroup size is greater than 1.

* One part number.

» One characteristic per chart.

Product is produced frequently.

Should have at least 20 subgroups before calculating control limits.
 Engineering specification limits must not be drawn on the X chart.

Can be used when the original measurements are not normally distributed
(since averages tend toward normality).

To Calculate Plot Points:

UCL = X+A2 )=(= n=2to 9 but
k - X 3t05

LCL=X-A, R X = °

where k = number of n preferred.
subgroups
Subgroup sizes
R UCLR =Dy R _ s R R = Range of subgroup | can vary, but
R= ” measurements. constant is

LCLR =D; R

= Xmax - Xm|n eaSIeI’.

Figure 1.12.4.2 Calculations for X and R Charts

Note: See table in figure 1.12.3.2 for values of A,, D,, D,. These constants
depend upon the subgroup size.

The X plot point is the average of the subgroup data. In the example in figure
1.12.4.3, the subgroup size is 4 (n = 4). The range plot point R is the difference
between the largest and smallest measurement within the subgroup data. Note that
for the R chart the upper and lower control limits are not symmetric about the
centerline R.




Example:
Date: 5/10 Subgroup data
Time: 7:00 a.m. 62
61
61
60

Total of the subgroup data (= X) = 244

Calculate the subgroup _
Average (X) = 2%::4 =61.0 X plot point

Subgroup range (62 - 60) = 2.0 Range plot point

Figure 1.12.4.3 Calculation of the First Plot Point for Figure 1.12.4.4.

The completed X and R chart in figure 1.12.4.4 was started by using the data in
figure 1.12.4.3. All calculations are shown.

Interpretation of Chart:

The chart in figure 1.12.4.4 is used to monitor a single characteristic, the inside
diameter of a hole (in ten-thousandths of a inch). On the left-hand side of the chart
form is a table of constants used in calculating the control limits. The “comments”
section at the top of the control chart is used to write down any notes regarding
special events that could impact the measurements. The original data is written in
the “samples” section. The plot point calculations are performed below each
sample. The X plot points are in the first shaded row, “Average (X).” The range plot
points are in the second shaded row, “Range (R).” The centerline and control limit
calculations are shown on the left-hand side of the control charts.

The Range chart shows that R, the average expected variation within subgroups, is
4.1 units. (The 4.1 is a coded value for 0.00041 inch, or 4.1 ten-thousandths of an
inch.) The highest expected variation is 9.3 ten-thousandths of an inch. There are
no out-of-control conditions on the Range chart.

The X chart shows that the process is centered on 59.9, and if the process was in
control, the subgroup averages should not exceed 62.9, or go below 56.9. However,
plot point 11 dips below the lower control limit, which indicates there is probably a
special cause of variation impacting the process. In this particular case, the out-of-
control point was caused by an accidental knocking of the fixture. The correction
was to reset the fixture (see the “comments” section at the top of the chart).

Specification limits must not be drawn on the X chart since the plotted points are
averages and the specification llimits apply to individual values, not to averages.
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Recommendations:
Collect measurements for another subgroup and add the average and range plot
points to their respective charts. Then recalculate the control limits (excluding the
out-of-control point) for both charts, and if the most recent plot point is in control,
extend the limits into the future. Continue to monitor the process. Closely watch the
chart for future abnormal variation, and look for ways to further reduce the level
of R.
X and R Chart
Part # TR1001-24 7’30 © S Note:
Chart # 1 % @ X . )
Depttt 7 o & Y Measurements are in
Machine# ____JigBore3 s% </.e Cg(} ten-thousandths of an inch
Characteristic /D % & X
COMMENTS \ 4 % v % ¥ N % % %% 4% % % % % N Y\ v\
n A2 Dy DS DATE | 510 5-11 5-12 | 5-16
T E E T PATFl‘l\.Iqi 7:00 | 7:15|8:00 |9:00 [10:00] 2:30 | 3:00 | 9:00 | 9:30 [10:30] 7:00 | 7:30 | 8:00 | 9:20 D:OUlE:SO 1:15|2:45|4:10 | 7:15
AQS Z ég gzgg% : 1 |62 [60)63)|60| 60 62|64 5676361 [60 6263 |59 |60]|59]|64]57]59]61
Tools S B O I e P P P P I P PP FY I P PP
H os 18 o c 4 60 | 59| 57 | 59 ?????T??;? 62 | 60 | 61 | 58 | 60 | 61
9 0.34 1.82 0.18 E { 20 100 1 o9 { of {00 1 OF 1 o 100 {00 1be { o0 10f ]
S 5
TOTAL (Z)() 244| 245 236| 238| 235| 237 | 243| 232| 243| 241| 227| 250| 247| 240 | 236 | 237 | 243 | 236 | 238 | 240
AVERAGE ()_() 61.0|61.3/59.0(59.5 | 58.8 [59.3 |60.8|58.0 | 60.8|60.3 [ 56.8 |62.5 |61.8 [60.0 [59.0 [59.3 [60.8 [59.0 [59.5 | 60.0
RANGE (R) 2l 5 71 1| 4 6| 6 3 s 2| s 4 4 s e 4| 5| 4f 1] 3
X CHART -
64
UCL=?+(A2X_R) e—_— e
=59.9 + (0.73 x 4.1) -
=62.9 It
. ’\ I /
CENTERLINE = =
_ = T 1T X
z_ 3 X - T
~ Number of Subgroups [ 3 \[/ \\ /
=197 _599 = |l
20 57 ’L
A e e B e B -T\)—_ === = [ = [—=F = |LCL
— _ 56
LOL=X+ (A, xR)
=59.9-(0.73 x 4.1) 55
—56.9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
RANGE CHART
=
UCL=D, xR =
=228x4.1=93 12
11
10
CENTERLINE = I
A- R ;
Number of Subgroups 6
=82 _y4y4 . "
20 R
3
2
— 1
LCL=D3 xR 0 LCL
=OX4.1=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
D1-9000-1 _
Figure 1.12.4.4
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1.12.5 X and S Charts i e

What:

« Control charts for variable data used to monitor the behavior of process
average X and standard deviation s of a single measurable characteristic
produced frequently.

 Allows for greater precision than the range (R) chart. It is recommended that
a calculator or computer be readily available to perform the computations.

When:

» See section 1.12.
* In situations where parts are produced frequently or in high volume.

» Subgroup sizes are greater than 1, and certainly used when subgroup sizes
are 10 or larger.

Why:
» See section 1.12.

How:

By plotting subgroup averages and standard deviations on separate charts
and adding the centerline and control limits to each chart. These charts are
referred to as the X (pronounced X-bar) chart and S chart, respectively.

» See section 1.12 for details.

X-Bar Chart Using S

2.525 T T T T T
1 1 1 1 1
1 1 1 1 1
2515 F-+-4--1--F -+ UCL
1 1 1 1
1 1 1 1
2.505—/t\$—_—{-'--+
Average ! [ S
i T T T T X
2ass 12N
1 1 1 1 1
2485 -t -4l bl m oLt LCL
1 1 1 1 1
2475 1 1 1 1 1
1 2 3 4 5 6 20 21 22 23 24 25
S Chart
0-024 T T T T T T T T T T T T T T T T T
| | | | | | | | | | | | | | | |
0020 F -—F-—d--Im-F-+-—d--l—-F-f-—-dA--I-—-F -+t -dA--I—-F -+t -—AdA--l-—F -+ -4 - -
1 1

~T{ucL

T T T
| | | |
] ] ] ]
I I I I
0016 F =L - 0 - 1o LU oL oL Lo Lol L4 oL 1
I I I I I I I I I I I I I I I I I
| I | ] ] | ] I ] | | I ] | | ] I | I
Standard 0.012 | - - - - - - I_A_T____I__I_A__I__I_//i\: —I—A ————— Nl ulial tial Sl il
i i | | | | | | | | | |
Deviation ; o5 & A ! 2 !
S I
1
I
I
I

i T TN\ ' T
| [ \1 [
TN/ T NS ToaONY S\ T
| |V |\—[| 1 |V 1 \—/I 1 1 1 S
{0007 S O N NIy T S T
T T T N 1 T T T (Y S S (O (N SN SR SR SR
e — LCL
-0.020 R e e T e e e e e e e
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Conditions:

» Subgroup size is greater than 1.
* One part number.

» Can be used when the original measurements are not normally distributed,
since averages tend toward normality.

* One characteristic per chart.

Product is produced frequently.

Should have at least 20 subgroups before calculating control limits.
« Engineering specification limits cannot be drawn on the X chart.

To Calculate Plot Points (when a computer is not
available):

n = 2 or greater

X

N UCL=X+A,S = k w_ 2% |but3tos
- referred
LCL=X-A,S where n P
k = number of subgroups Subgroup sizes
can vary, but

s UCL =B4 S 5. s 5 (X -X ) | constantis
LCL =B, § K s=\—Fg— | easier

Figure 1.12.5.2a Calculation for X and S Charts—
Use these formulas when a computer is not available.

Note: See table in figure 1.12.3.2 for values of A,, B,, and B,. These constants
depend upon the subgroup size.

To Calculate Plot Points (when a computer is
available):

UCL =X +3 Sp = n =2 or greater
— + - =
X n X = k w. 2% |butstos
= Sp = n preferred
LCL=X-3 —— where
Jn k = number of subgroups .
> Subgroup sizes

UCL =Bg S _ |25 — can vary.
s P Sp K [T -XPP

LCL =B S, where SN T

k = number of subgroups

Figure 1.12.5.2b Calculation for X and S Charts—
Use these formulas when a computer is available.

Note: See table in figure 1.12.3.2 for values of A,, B,, and B,. These constants
depend upon the subgroup size.

The X plot point is the average of the subgroup data. In the example below, the
subgroup size is 3 (n = 3). The S plot point is the standard deviation of the sub-
group data.




Example:
Date: 5/11 Subgroup data
Time: 8:00 a.m.
Part: A 2.51
2.49
2.50
Total of the subgroup data (£ X) = 7.5
Calculate the subgroup average (Y) = 7T = 250 — X plot point
2 2 2
Sz\l (2.51 - 2.507 + (2.493— 2i50) +250-250° 10 o S plot point

Figure 1.12.5.3 Calculations for First Plot Point for Figure 1.12.5.4

The completed X and S chart in figure 1.12.5.4 was started by using the data in
figure 1.12.5.3. All calculations are shown and follow the formulas in figure
1.12.5.2a.

Interpretation of Chart:
The chart in figure 1.12.5.4 is used to monitor a single characteristic, the inside

diameter of a hole. On the left-hand side of the chart form is a table of constants
used in calculating the control limits. The “comments” section at the top of the

control chart is used to write down any events that could impact the measurements.

The original data is written in the “samples” section. The plot point calculations are
performed below each subgroup. The X plot points are in the first shaded row,
“Average (X).” The S plot points are in the second shaded row, “Standard Deviation
(s).” The centerline and control limit calculations are shown on the left-hand side of
the control charts.

The S chart shows that S, the average expected standard deviation within sub-
groups, is 0.009. The highest expected variation is 23 thousandths of an inch.
There are no out-of-control conditions on the S chart.

The X chart shows that the process is centered on 2.500, and if the process was in
control, the subgroup averages should not exceed 2.517, or go below 2.482. How-
ever, plot point 16 dips below the lower control limit, and plot point 18 rises above
the upper control limit, which indicates there are probably special causes of varia-
tion impacting the process. In this particular case, the out-of-control points were
caused by loose clamps on the tooling. The correction was to tighten the clamps
(see the “comments” section at the top of the chart). The assignable causes are to
be recorded on the control chart when they are found.

Specification limits must not be drawn on the X chart since the plotted points are
averages and the specification limits apply to individual values, not to averages.
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Recommendations:

Collect measurements for two additional subgroups and add the X and S plot
points to their respective charts. Then recalculate the control limits (excluding the
out-of-control points) for both charts, and if the most recent plot points are in
control, extend the limits into the future. Continue to monitor the process. Closely
watch the chart for future abnormal variation, and look for ways to further reduce
the level of S.

X and S Chart

Part#__ 671148

1-1 < < A
ghart# —a—— %% %% EIPN
eptit o o
Machine#l— 63 % %069
Characteristic — ° S
COMMENTS u v % % % %% % % ¥ ¥ ¥ A% % % % % %Yy \
n Az B3 Ba DATE |51 512 5/13 5114 5/15
2 2659 0 3.267 TIME | 8:00 |9:00 [10:00{1:00 |2:00 [7:30 |8:40 [10:0 1:45[2:50 | 7:30| 8:30| 9:30[11:00] 1:00{2:05 | 3:00| 8:00,
3 - 2508 PART# [ [alafalalalalafalalalalalalalalalalala
5 1.427 0 2:089 s 1 251 |250]2.50 |2.50 [.48 [2.50 [2.50 |2.49 |2.49 [2.49 |2.50 [2.49 [2.51 |2.52 |2.49 [2.48 |2.51 |2.51 | 251 | 2.49
?[ ifgg g-?fg i'ggg ; 2 [249 [251|250|251 p.s0 [250 [251 [251 [2.48 (251 [250 [250 250 [2.40 [2.48 [2.48 [2.49 [2.52 [ 252|250
8 1099 0185 1815 P 3 [250 252251 [250 [p50 [2.50 [2.50 250 [249 [251 |25 [250 (248 [250 [2:50 [2.49 [2.48 |22 [251 | 248
9 1032 0239 1.761 L 4
10 0.975 0.284 1716 E
1 0927 0321 1679 s 5
15 0789 0428 1572
20 0680 0510 1.490
25 0606 0565 1435
_ =) ~ ~ o~ ~ o
AVERAGE(X)§§§§§§§§§§§33§§§§EE§
NN N NN NN N[N N
STANDARD 2|2 & 2 g o 22 2 2
seamons |3 8 §(8)8/8)8)5 858855585885
X CHART iAdAAAAAddAdAdiAd AR AALAAl
— _ 2525
UCL=X+(A3x S)
=2.500 + (1.954 x 0.009) PR
=2.517 2515 =—UCL
2510 |
CENTERLINE = | \
e 5
~ Number of Subgroups \ ] { =
_ 50 500 — \ TN IZI T X
20 2495 \/ \\ II — \\ \\
_ _ 2490 \l/ 7
LCL=X-(A3x ) N1/
=2.500-(1.954X0.009) 2485 gy — | — — S S— —— —_— — T—— NS = = + = [— = 1 LCL
=2.482
2475
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
S CHART
UCL=B, xS
=2.568 x 0.009
=0.023 0.026
CENTERLINE = 0050
5= > S ucL
Number of Subgroups
0.014 N i
= 0180 _ g go9 — A / JAA
20 - % yamnn ey + = 7 S
LCL=B3xS 0006 \
=0x0.009 \[/
-0.0 0.000 LCL

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Figure 1.12.5.4




1.12.6 Individual X and Moving-
Range Charts (IX-MR Charts)

What:

A control chart for variable data used to monitor the behavior of a process
using the individual measurements of a product characteristic.

When:

* In situations where opportunities to obtain data are limited, such as low
production volume or testing.

» Sampling sizes greater than 1 simply do not apply, such as when sampling
from homogeneous batches (e.g., heat treating), or when samples have very
small short-term variation (e.g., sheet metal stamping), or for business pro-
cesses (e.g., performance measures).

» Also see section 1.12.

Why:

» See section 1.12.

How:

By plotting individual measurements and the moving ranges on separate
charts and adding the centerline and control limits to each chart. These
charts are referred to as the Individual X (or IX) chart and Moving-Range (or
MR) chart, respectively.

» See section 1.12 for details.

2.45 T T T T T T T T T T T T T T T T T T T T T T
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2_35__l__l__l__L__|__|__|__l__l__l__L__|__|__|__l__|__|__L__|__|__|__l__|__UCL
[ o [ [ o [ [ [ [ [
B l [ [ | [ [ [ | [ [ [ [ |
25 -+ HNCI- - A - -k — - - —m g — = D e el e T e Bl S SR P
Individual | '/\w/\' LA NS AN
X 2-15--\(—-,——l-—r--,—\M—-,V'T'Y"F“F'T AT I__I__\__I__I__T__I__X
[ [ [ [ 1 | 1\ [ [ |
205 -l - 0 o L0 oL _ Ll L_d__l__L_1°_ oL o _L_Ll_J__
[ [ [ | [ [ [ Y [ [ [ |
7 N R N O A A A 171
[ [ [ | [ [ [ | [ [ [ [ |
1.85 L L L1 L L L1 L L L L1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Moving-Range Chart
0.30 T T T T T T T T T T T T 1 T T T T T
0.25 UCL
25 -+ -d--I-—t—d4-—-l-—F—t+-dA--I-—ft-4-—-l——F-+--d-—l-m—t+—-4-—l-—F—+—- - —

Moving
Range
MR MR
LCL

Figure 1.12.6.1
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Conditions:

* Low volume production rate.

» Subgroup size of 1.

* One part number.

* One characteristic per part.

» Assumes normal distribution of measurements.

Should have at least 20 (preferably 30 or more) subgroups before calculating
control limits.

To Calculate Plot Points:

Chart Control limits Centerlines Plot points Sul;?;gup

IX UCL:)_(+(2.66xMR) % < > X Individual X
3 K measurements
LCL =X -(2.66 x MR) where k = number of One
subgroups
Moving range =
MR UCL = 3.27 x MR MR = > MR positive difference
T kA between successive
LCL= 0 IX measurements
Figure 1.12.6.2 Calculations for the IX and MR Chart
Example:

For the IX plot point, plot the individual mea-
surements. The moving-range plot point is the m“n
positive difference between each successive

individual measurement. For example, the first 1 2.90 -
moving-range plot point is the difference 2 2.15 0.05
between 2.20 and 2.15, which is 0.05. The next 3 2.29 0.14
is the difference between 2.29 and 2.15, which 4 2.20 0.09
is 0.14, and so on. 5 2.21 0.01
. 6 2.24 0.03
Figure 1.12.6.4 shows an IX-MR chart that was 7 212 0.12
started using the data in figure 1.12.6.3. The 8 519 0.00
data are degrees of angularity on a large 9 217 0.05
machined part. All calculations are shown. 10 2.19 0.02
IX 1
plot points
Moving-range
plot points

Figure 1.12.6.3
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Individual X and Moving-Range Chart

Part # J647-02 P
Chart # ; %o
Dept# _
Machine# Ml qv’é,
Characteristic Angularity 5.
COMMENTS % %% %% % % % N N N % N N N N W N N N N Y N Y
DATE [2-2als
o A D D B ,
1 266 327 0 PART #
INDIVIDUAL X 220 |2.15(2.29|2.20 | 221 [2.24 |2.12| 2.12| 217|219 |2.11| 224|213 |2.25 [2.20 [2:22 [1.99 |2.18 [2.23 |2.14
MOVING RANGE (MR) | — | 05| 14|09 | 01| 03| 12| 00| 05| 02| 08| 43| 11|12 | .05 [ .02 |23 | .19 ] .05 [ 00
280
IX CHART
UCL =X + (2.66 x MR) 280
=2.18 + (2.66 x .08) 250
=2.39
2.40 UCL
CENTERLINE =
B X 2.30
xo 2%
K 220 — 1/ vi vi kn P
7TNI7 T X
=43.58 _o 18 b 4 1 [/
20 210 \[7
200 — — ]| e | e | b | o [o—] /_ e | b | — | H4LCL
LCL =X - (2.66 x MR)
=2.18 - (2.66 x .08) 10
=1.97
1.80
LR 1 2 3 4 5 6 7 8 9 10 11 12 18 14 15 16 17 18 19 20 21 22 23 24 25
MOVING-RANGE
CHART =
UCL = 3.27 x MR = ucL
=3.27 x .08 24
=0.26
20 ]
CENTERLINE =ZMR o / "
MR = 93 - / II \\
b —
=g =008 - i H MR
_ W ARV ] y
: \[_ 4 \
LCL=0 5 Y LCL
1 2 3 4 5 6 7 8 g9 10 1 12 138 14 15 16 17 18 19 20 21 22 23 24 25

Figure 1.12.6.4
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Interpretation of Chart:

In this example, angularity is being monitored as a key characteristic on a large
machined part. Since this part takes several hours to produce, the Individual X (IX)
and the Moving-Range (MR) charts were selected. The two rows labeled “Indi-
vidual X" and “Moving Range” are the plot points.

All plot points on the control charts are within the control limits, indicating this
process was in control during the period monitored. Point 17 on the 1X chart did
come close to the lower control limit; this may have been due to the presence of a
new operator, as indicated in the top row designated for comments.

Recommendations:

Monitor process for assignable causes. Be alert for signs of special events that
could affect the variation in the part. It would be beneficial to collect 10 or 20 more
plot points and recalculate the control limits because there is a limited amount of
data being used in the calculation of the current control limits.




1.12.7 Target Charts

What:

» Control charts for variable data used when monitoring the behavior of a single
quality characteristic produced by a process running different parts.

» A quality characteristic may be shared by many different parts. The char-
acteristic may have different target values depending upon the part being
monitored. This is of particular value in short-run or process-control
situations. Target charts across these parts are based on constructing
centerlines and control limits with transformed data. Before control limits
are calculated, each measurement is normalized (coded) by subtracting a
target value from the measured value.

+ A simple example of Target X and R charts is shown in figure 1.12.7.1.
Target charts can also be applied when the subgroup size is 1 (Target
Individual X and MR charts), or when control limits are based on S (Target
X and S charts).

* In other words, Target charts are simply standard control charts as de-
scribed in sections 1.12.4 through 1.12.6, but using transformed data. The
transformation described here is deviation from target. It is the most
commonly used transformation.

When:

» Performing short production runs.

» Monitoring a process.

» Performing a part-to-process analysis.
» See section 1.12.

Target X-Bar Chart for Three Part Numbers
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Figure 1.12.7.1
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Why:

 To support process-oriented SPC rather than a part-by-part SPC.
To better display, statistically control, and improve a family of parts.
To better display, statistically control, and improve a process.

To reduce the number of control charts needed.

 To reduce the number of AQS control plans needed.

» See section 1.12.

How:

* By coding the actual measured readings as the deviation from a target value.
The target value is converted to the zero point on the X or IX control chart
scale.

« The X, IX, R, S, and MR charts are computed in the same way as the corre-
sponding charts described in 1.12.4, 1.12.5, and 1.12.6, using the coded
(deviation from target) value.

Conditions:

» Several part numbers produced by one process.
» One characteristic per part, but often having different targets.

» Often used in short-production-run situations or for process-output control
(See D1-9000 section 2.4).

* All parts on the chart are measured in the same units and have similar varia-
tion, including, similar subgroup ranges. (See sec. 1.12.16.)

» Should have at least 20 subgroups before calculating control limits.

 All parts on the chart should have their measurements centered around their
target values and thus around zero on the Target chart. That is, the average
values of the measurements of each part should not be statistically different
from their target value, This can be tested using a t-test (see any standard
statistical text for a description of the t-test).

Four Orders of Bar Stock Q
Target, Number Number of f——y
6

B 5.25 12 4 |«—5.25 —>|
C 7.50 18 6 ( D
A 3.00 24 8

|=—— 7.50 ——>]

Figure 1.12.7.2 Four Orders of Bar Stock—The subgroup size used is three.

To Calculate Plot Points:

Figure 1.12.7.3 shows the calculations for a Target X and R chart. Note that they
are the same as for the standard X and R chart except that coded values for the
measurements are used; namely, coded X = (X- target). In a similar way, the




calculations for Target X and S and Target IX-MR are the same as their counter-
parts except coded values for the measurements are used.

Centerlines Plot points Subgroup size
_ Coded X = Coded X =
_ UCL = Coded X + A, R = _
X - 2_ 2 coded X X-targetvalue| _ _ 5409
LCL = Coded X- A, R K - but
where _ 2(X; - target) 3105
_ k = number of subgroups n preferred
UCL=D4 R _ SR R = Range of
R _ R=—— subgroup
LCL=Dz R k measurements
Figure 1.12.7.3 Calculations for Target X and R Charts
Example:

As an example, long pieces of 3/4-inch bar stock are to be cut to length on the
same machine to fill four orders. Each order requires different lengths. See figure
1.12.7.2. All four orders can be plotted on the same control chart by standardizing
the data, using the calculation steps in figures 1.12.7.4 and 1.12.7.5.

For the target X plot point, find the average of the subgroup data and then subtract
the target value. (Note: This gives the same value as averaging the coded values.)
The range plot point is the difference between the largest and smallest measure-
ment in the original data or the coded data.

Date: 1/16 Subgroup data
Time: 9:00 a.m. 2.90
Part: A 3.05

3.10

Total of the subgroup data = 9.05

Calculate the 905
subgroup average (X) = =3 3.02

Target value = 3.00

X - target value = 0.02 Target X plot point

Subgroup range (3.10 - 2.90) = 0.20 Range plot point

Figure 1.12.7.4 Calculations for First Plot Point for Figure 1.12.7.5

Figure 1.12.7.5 shows a Target chart that was started using the data in figure
1.12.7.4. Notice there are three different part numbers on this one chart.
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Target X and R Chart

Part # 72T7900A
Chart# — 25— ’%% o)
Dept#—th—
Machine#& Qz; < %%)\
Characteristic —Len9th__ Y S %
COMMENTS s.s.ls‘\\\\\\\\r\\\&x\nn
DATE [1-16
n AZ‘ & & TIME [900 mj 1:00 |s:_zn
1 266 327 0
2 188 327 0 PART# | afla[B|B[B|B[c|c|c|clclclalAa[afala]|lalAala
3 102 257 g S 1 [290 |300]5.15]540)5.25|5.20 |7.65| 7.50| 7.65|7.35|7.55 |7.50 [2.85 | 310 3.05 | 2.85 | 3.00 [2.80 | 3.00 [2.90
5 o8 Pyt 0 b 2 [305 [285]530]520] 5.25]5.05 [ 7.45] 7.50] 7.70[ 7.507.65 [ .45 [2.85 | 295|310 [ 2.95 [3.05 [3.05 [ 300 | 295
6 0.48 2.00 [ P 3 [3:10 [295]530(5.25] 525520 [ 7.55 | 7.55| 745 7.607.65 | 750 [3:00 | 3.00 | 3.00 | 2.90 [2:95 [3.00 |2.95 [3.10
7 0.42 1.92 0.08 L
8 037 186 014 £ 4
9 034 1.82 0.18 5
PART#  Target TOTAL (3 X) 9.05| 8.80[ 15.75| 15.85] 15.75{ 5. 45| 2285 22.45( 879 005 .15 8.70| 0.00| 885| 85| 8.
A K4-12  3.00 AVERAGE (%) 302] 298| 525 528 529 516 7.55| 752 70| 7.48| 7.2 748| 290 30| a0s| 20| 300| 295| 298| 298
B F-09J7 525 TARGET VALUE 300 300|525 525 529 525 7.50| 750 70| 7.50 750 7.50| 300 a00| a00| 300 300| 300[ 300f 300
[ Y12 750 __GODEDX 002007 o 003 of 0.10[ 005 002 0.10[-0.02| 0:12|-0.02| 0] 02| 005[ 010 0 -005[ -002] -02
(X - TARGET VALUE)
D RANGE (R) 020] 015 015 02 0.15] 020 005| 025| 025 0.10| 005| 015 01| 10| 0:10] 0.10] 025 005 020
; PAIAARICARKARIAAAARAAAAAAAL
020
Target X CHART
016
UCL = Coded X + (A, x R) 014 ucL
=-0.0045 + (1.02 x 0.143) bl
=0.141 ™ I
e I
CENTERLINE = on 2 |/ \\ /I \\
= X 002
Coded X = _3CodedX B I \[ 1 \ 3
Number of Subgroups \ Ji \
=009 00045 [ o P \ IR
2 oo I \ T
oo Vi T
LCL = Coded X - (A, x R) 010
2 012
=-0.0045 - (1.02 x 0.143) 014
= _0.150 -0.16 - — ms s — -+ — — — T o - LCL
018
0.20
12 3 4 5 6 7 8 910 11 12 18 14 15 16 17 18 19 20 20 2 28 24 25
RANGE CHART —
UCLR = D4 xR ey i S B o ol Ml s s o e b o s A s s sl e el s sl B ucL
=2.57 x0.143 %
=0.37 -
0.25
CENTERLINE = T il
B 020 T \ T
Number of Subgroups — [ 1] Y T 1V 7 _
085 ' - —_— — R
2850143 Wil ARV 1/
\\ // \IJ \[/
LCL = D3 xR 0.05 17
=0x0.143 o LCL
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Figure 1.12.7.5




Interpretation of Chart:

For this example, three different part numbers were cut on the same machine and
monitored on this single Target chart. Plot points between part numbers may or
may not be connected. In this case, all the part numbers were cut to length. Since
this operation is identical, regardless of part number, the plot points were con-
nected.

There is space on the chart paper to write the target values for each part number.
The “comments” section is used to note any events that could impact the process.
The original data is written in the “samples” section. The plot point calculations are
performed below each subgroup. The coded X plot points are in the first shaded
row, “X- Target Value”. The Range plot points are in the second shaded row, “Range
(R).” The centerline and control limit calculations are shown on the left-hand side of
the control charts.

On the Range chart, all the part numbers appear to have similar average ranges.
Statistical tests such as the Kruskal-Wallis test (1.12.16) must be used to evaluate
similar variability among part numbers. The R chart and X chart show no unnatural
patterns and are considered to be in statistical control.

Recommendations:

Continually look for economical ways to reduce the average range, and closely
watch the X and R chart for out-of-control conditions.
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1.12.8 Exponentially Weighted
Moving Average Chart

What:

» The Exponentially Weighted Moving Average (EWMA) chart is a control chart
for variable data that provides a graphical representation of weighted sub-
group averages displayed in a time-ordered fashion. The weighting gives the
most recent subgroup average the greatest weight, with all previous subgroup
weights decreasing in geometric progression from the most recent to the first.

When:

* Increased sensitivity to relatively small changes or trends in the process
average is desired.

« (Can be) Used in conjunction with other control charts (e.g., X and R charts).
» See section 1.12.

Why:

« The EWMA chart is more sensitive to small sustained shifts or trends than
standard Shewhart charts, but is less sensitive to periodic shocks.

How:

By calculating the current plot point as a proportion (r) of the current sub-
group average plus (1-r) times the previous plotted point (r = 0.2 is often a
good value).

» To begin the process, estimate the process average from the data. Then the
first plot point is r times the current subgroup average plus (1-r) times the
estimated process average.

» The charts are usually generated using SPC software.

Conditions:

» Constant subgroup size.

* One characteristic per chart.

» Should have at least 20 subgroups before calculating control limits.
» Should have a computer available to perform computations.

Exponentially Weighted Moving Average Chart

61.25 T

|
60.75 '% !
N | |
Weighted %%

Moving 59.75
Average

uUcCL

59.25 -

58.75 -

59.25 T + + T + u T t T T + + T + + T +
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Subgroup Number

Figure 1.12.8.1




To Calculate Plot Points:

oo |Gz [ comerne | psom | i

)=( = Z_>_( EWMACurrent= rX Current
Ca'|CU|ate k +(1-n EWMA Previous Constant,
EWMA gfz:gg oftenn=1,
software K = number where ris constantand O <r < 1 but n can

of subgroups be > 1

EWMA ;o= X, + (1-) X

Figure 1.12.8.2 Calculations for the EWMA Chart

The first step when using an EWMA chart is to select a weighting factor. This
weighting factor will determine how much emphasis will be given to the current
measurement and how much will be given to all previous measurements. For
example, if the weighting factor is 0.2, a 20% emphasis will be given to the current
measurement and an 80% emphasis will be given to all previous measurements.
This means each previous subgroup, back to the first, has decreasingly less influ-
ence on the current plotted point. For example, if r = 0.2, the weightings for the last
six subgroup averages are 0.20, 0.16, 0.128, 0.102, 0.082, 0.066, respectively.

If r = 0.2, then the current plot point is 0.2 times the current subgroup average plus
0.16 times the next to last subgroup average plus 0.128 times the third to last
subgroup average, and so on.

A typical weighting factor is 0.2. A standard X Shewhart chart has a weighting
factor of r = 1.0.

The data used to develop the EWMA chart is the same data that would be used for
the other variable control charts. The EWMA is often used in conjunction with other
control charts (e.g., X and R charts).

A sample EWMA chart that was started by using the data shown in figure 1.12.8.3
is shown in figure 1.12.8.4.
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Weighting factor = 0.2, X = 59.85

Subgroup #1 data: 62
61
61
60

Total of subgroup data = 244

Calculate the first _ 044

subgroup average (X) = = 61
First EWMA plot point

(0.2) 61) + (1 - 0.2) (59.85) = 60.08

<mmmm rirst EWMA Plot Point

X

Subgroup #2 data: 60
62
64
59

Total of subgroup data = 245

Calculate the second 245
subgroup average (X) = ~7 = 61.25

Calculate current plot point

First subgroup average

(0.2) (61.25) + (1 - 0.2) (60.08) = 60.31 _ Current EWMA Plot Point

First EWMA plot point

Second subgroup average

Figure 1.12.8.3 Calculations for the First Two EWMA Plot Points
for Figure 1.12.8.4




Exponentially Weighted Moving Average Chart

Part # TR1001-24 /F% %
Chart# 1 % B %
Dept# 7 @C;\ ‘%(\ £
Machine#____JigBore3 % 9 Q
Characteristic __I/D % % %,
COMMENTS \ % % % % ¥ % % ¥ % % % %% % % %N N\ VY \
DATE | 510 511 512 516
TIME | 7:00 | 7:158:00 | 9:00 [10:00{ 2:30 | 3:00 | 9:00 | 9:30 }10:30] 7:00 | 7:30 | 8:00 | 9:20 [10:00}12:30] 1:15 | 2:45 | 4:10 | 7:15
PART #
s 1 |62 |60 63|60 60|62 |64 576361 |60 6263|5060 50]64]57]50]61
0 2 |61 |62|56|50] 60|61 |61]58]59)|60 |65 60 64| 605657 |50 61|50 ]58
P 3 |61 |64a|60|60] 59|58 |60 60|63 |50|56 |64 60 585861 [50]60]60]060
E 4 |eo | 59|57 |50 56|56 |58 57|58|61[56 |64 60 6362|6061 |58]60]060
5

61.00
ucL

60.75 = 20

EWMA CHART re
60.50

1
60.25 \
N /
CENTERLINE = 59.85 oo X b _
_ 59.75 a \ \ /’ X
= X
X= zk 59.50 5 \ /
—— \[/
1197
=20 = 59.85 59.25 1
=1
59.00 o
=
B = B e e e e e e e LCL

58.75
58.50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Figure 1.12.8.4

Interpretation of Chart:

The key feature to look for on an EWMA chart is whether any plot points fall outside
the control limits. On this chart, all points are within the limits, so there is no rea-
son to believe that the process average has shifted. A downward trend may have
occurred between plot points 2 and 6. However, care is required when interpreting
patterns on an EWMA chart, since the data represented by one plot point is not
independent of the data in previous plot points.

Recommendations:

Continue to monitor the process using an EWMA in conjunction with conventional
(e.g., X and R) control charts. Investigate the process for changes in the process
average when a plot point falls outside the control limits on either the conventional
or EWMA charts.
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1.12.9 Multiple Characteristics
Charts

Introduction

The quality of a part or process is often characterized by several key characteris-
tics. Even though the quality of each individual characteristic may be important, the
overall quality of the part or process is often affected by the interaction among all
these characteristics. As a result, the quality cannot be completely determined by
monitoring the characteristics separately.

For example, measuring the thickness of sheets of material at one location may not
be sufficient to ensure consistency across the sheets. The sheets may need to be
measured in multiple locations and analyzed jointly in order to monitor overall
quality.

As another example, the overall quality of wire may be determined by the joint
influence of both thickness and tensile strength. These characteristics may be in
statistical control individually, but may not be jointly in control due to the correlation
between features.

Similar situations to these include:

1. Measuring a feature at different locations on the same part:
» Thickness along a spatr.
« Contour of a surface. ,J—-ll + + ,
* Peripheral trim. ,:

Frame straightness.

Chemical concentration throughout a
tank. N Vi l{_

Temperature throughout an oven. —> «
perat g 000 0-|_0/~0 000
» Gap or fair around a door. _ - b

-
-»>

The feature represents a set of key charac-
teristics that are of the same type and unit of
measure, but are at different locations on a
part or in a process.

2. Measuring several features on the same part:
» Hardness, brittleness, and tensile strength of a fastener.

» Cured ply thickness, areal weight, resin content, and compression strength of
composite material.

 True position (X, Y, z).

These are key characteristics that are of different types, and perhaps different units
of measure, but are usually correlated.

To improve the overall quality of parts or processes in situations such as these
requires the thoughtful application of various statistical charts and analyses. Con-
ventional statistical control charts will be helpful but may not be totally sufficient.

The charts presented in this section illustrate suggested charts and analytic ap-
proaches that may supplement conventional control charts presented in other parts
of section 1.12. The charting approaches included here and summarized in
1.12.9.5 are:

» Controlling each key characteristic individually using conventional control
charts to monitor each characteristic separately.




» The Three-Way chart is a set of three charts used to control a feature measured
at several locations, and when software is not available for more sophisticated
analysis such as the Spline or Hotelling T2 charts.

e The Hotelling T 2 Multivariate control chart is a single control chart to simulta-
neously monitor several correlated key characteristics. This chart uses the
Hotelling T?statistic to help control the process.

» SPC using spline fitting employs a single pair of IX-MR control charts to control
a feature being measured at several locations. The statistic that is plotted can be
chosen from a group of statistics that result from the comparison of a smooth
curve (a spline) fit to the multiple measurements on a part and a standard. The
standard may be, for example, the engineering nominal or the average of other
splines.

The following describes options that can be explored relative to the two situations
described above.

1. Measuring a feature at different locations on a part (e.g., contour at fifteen
locations on a part).

Option 1: Monitor each location individually with a pair of control charts (one pair of
charts for each of the fifteen locations in the contour example above).

Option 2: Monitor the parts using a Three-Way chart (one set of three charts for the
contour example: IX-MR-R or IX-MR-S).

Option 3: Monitor the parts using a Spline IX-MR chart (one pair of IX-MR charts
plus a spline chart for any individual part).

Option 4: Monitor the parts using a Hotelling T2 chart (one chart plus graphical
displays for any out-of-control points).

2. Measuring several features on the same part (e.g., hardness, brittleness, and
tensile strength of a fastener).

Option 1: Monitor each feature individually with a pair of control charts (three pairs
of charts for the three material properties in the fastener example).

Option 2: Monitor all the features jointly on the Hotelling T2 chart (one chart for all
three material properties in the fastener example).

The Group and Location charts can be used to aid in the analysis of multiple
characteristic data (more detailed descriptions are presented in section 1.11).

» The Group chart is a graphical tool to help identify the consistent behavior of a
group of key characteristics; for example, whether some locations on a part
consistently produce high or low measurements relative to a target value or
relative to other locations. It is a time-ordered chart. Additional charts, such as
the Three-Way chart, can be used to supplement the Group chart.

» The Location chart is a graphical tool to help identify locations on a part that are
consistently off target or locations having large variation. It is a location-ordered
chart, not a time-ordered chart. The Location Box-Whisker chart is sometimes
used as a pseudo-control chart. (See section 1.11.5.)

As can be seen, some of these charts are intended for statistical control and others
are for part or process analysis.

As an example of a situation for which these charts might be useful, suppose the
thickness of a sheet of material is periodically measured across its width in five
locations. Is it sufficient or even cost effective to keep a standard control chart for
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Subgroup 1

Sub-
group

Characteristic/Location

Parts

f
A B C
Part
2
+ i} i
[
5 f !
A B C
Part
3
* L L /I
[
+ + +
A B ©
Subgroup size: 3 Thickness

Characteristics: 3

A B C
y
1 2
3
1
2 2
3
.
\Q\ >
o~ ———_ ~—
1
19 2
3
1
20 2
3

Figure 1.12.9.1 Possible Format for Recording Multiple Characteristic Data—
This example shows a format for three characteristics and subgroup size of three.

each location? If the measurements at the five locations are significantly correlated,
it is possible that the five individual charts will not identify joint out-of-control condi-
tions because the collection of individual charts is not sensitive to correlation

among the locations.

The Spline or Hotelling T2 Multivariate chart may help identify joint out-of-control
conditions due to the interaction of several characteristics that are not identified by
the individual charts. In addition, the Group or Location chart could be used to
identify whether or not certain locations, for example, are consistently manufac-
tured too thick or too thin. In conjunction with the Group chart, the Three-Way chart

might be used to identify any major process changes over time.

Many of the charts in this section can be used with individual measurements,
averages, and range data. In some cases Target forms of the charts can be used.
Constructing Target forms is a simple matter of subtracting the target value from
the actual measured readings at each location, and plotting the deviations from
target (see section 1.12.7).

Some of the charts discussed in this section can be used to monitor a feature
having similar characteristics (e.g., locations), a set of related key characteristics
(e.g., hardness and shear strength), and even the same characteristic but from
different sources (e.g., different spindles). In order to simplify the descriptions

of the charts, reference is made to measuring “locations” rather than similar
characteristics. It should be understood that other categories of measure-

ment data can also be used (e.g., multiple process streams).

In addition, reference is made to the measurement or monitoring of “parts.” It
should be understood that the charts apply to “processes” as well.

Figure 1.12.9.1 shows a possible format for recording multiple characteristic data.
This example shows a feature with three locations A, B, and C and the
corresponding data format. The same format could be used for a part with three
different features— A, B, and C.




1.12.9.1 Controlling Each
Characteristic Separately

What:

* A set of conventional control charts, such as X and R charts, used to monitor
several quality characteristics individually.

When:

» A key quality characteristic is produced by several process streams (e.g.,
depth of similar grooves cut by different spindles).

» A key quality characteristic or feature is measured at several locations (e.g.,
contour along a wing flap at several locations, thickness of a material at
several locations).

» Two or more quality characteristics jointly affecting overall part quality are
measured on the same part (e.g., hardness, brittleness, and tensile strength
of a part).

Why:

» See section 1.12.

» To monitor several quality characteristics individually using the same part(s)
(process output), identify out-of-control and other nonrandom conditions for
any of the characteristics, and take action to correct any nonrandom behavior

How:

» Follow the usual procedures by constructing average and variability control
charts for each characteristic. Figure 1.12.9.1.1 shows a possible format for
recording the data. There will be a pair of charts for each characteristic. For
example, if a gap is measured at 30 locations around a door, there will be 30
pairs of charts. If tensile strength and thickness of wire are the key character-
istics being studied, two pairs of charts will be needed.

Conditions:

» Measurements are to be taken from the same part or process output.

» Measurements from different features or locations across a part may be
somewhat correlated, but separate charts are most effective when the char-
acteristics are not significantly correlated.

» Measurements of a characteristic within a subgroup must be statistically
independent.

» Subgroups must be statistically independent of each other.

Interpretation of the Charts and Recommendations:

* Examine each of the charts for out-of-control conditions.

» Examine the charts for patterns. For example, the charts for different charac-
teristics may consistently track with or against each other across time. Either
situation would indicate correlation between the corresponding characteris-
tics. Statistical tests can be performed to measure and test for significant
correlation. (See section 1.16, Scatter Diagrams.)

« If a correlation does exist, a Hotelling T2 Multivariate chart or Spline IX-MR
chart might be helpful in identifying special causes of variation that affect the
characteristics jointly.
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I:art Sub- Parts Characteristic/Location
group
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Figure 1.12.9.1.1 Possible Format for Recording Data for Several Characteristics or a
Feature Measured at Several Locations— This example shows flange angle being
measured at three locations (1, 2, and 3) and having a subgroup size of one.

» Examine the charts for any characteristics that are generally larger or smaller
than target values. Such a pattern, or changes in variation by location, may
suggest the use of a Group or Location chart.

Example:

Suppose the flange angle is measured at three locations along the length of a spar.
One possible approach is to monitor each location individually with IX-MR control
charts. These are shown in figure 1.12.9.1.2.

In this case, the flange angle is recorded as deviation from nominal.
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Figure 1.12.9.1.2 IX-MR Charts for Flange Angle at Three Locations—
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Interpretation of the Charts:

Thirty-nine spars were measured at three locations on each. Three pairs of IX-MR
charts were prepared, as shown in figure 1.12.9.1.2, one for each location on the
spar. One chart had an out-of-control condition. For location 1, the moving-range
value for the 14th subgroup indicates a significant difference between measure-
ments for spar 13 and spar 14.

This incidence should be investigated to understand the cause for such a differ-
ence in measurement values. Then, corrective action should be taken to keep it
from occurring in the future. By observing all three sets of charts, it can be seen
that the 14th point on all three MR charts is large relative to the 13th point on all
three IX charts. This would lead one to suspect that the assignable cause was
consistent across all three locations.

From the three IX charts it can be seen that the measurements for the three loca-
tions are scattered around the value 0.5 and not around 0.0. This tells us that the
process is consistently off target, and that action is needed to place the process
closer to the desired target.




1.12.9.2 Three-Way Chart

What:

» A set of three time-ordered control charts for monitoring a feature measured
at several locations on the same part in a simple manner (see figure
1.12.9.2.1). The three charts are:

1. AnIX chart where each plot point is the average of the feature measure-
ments at all locations for a given part: for example, the average of the
thickness measurements from various locations on a part. In other
words, treat the averages as individual part measurements.

2. An MR chart for the above 1X chart. This chart is used in the computa-
tion of the control limits for the 1X chart. It is used to help understand
the overall part-to-part variation.

3. An R chart where the plot points are the ranges of all the measurements
from the given part: for example, the range of thickness measurements
within the part (it is assumed that the measurements all have the same
target value or that deviations from target are used). It is used to better
understand the within-part variation. Since the measurements from the
same part are not always independent of each other, it is theoretically
not always advised to place a control limit on this chart. However, some
analysts use the usual R-bar control limit as a guideline. The S chart
could be used rather than the R chart.

When:

» A key quality characteristic is produced by several process streams (e.g.,
depth of similar grooves cut by different spindles).

» A key quality characteristic or feature is measured at several locations (e.qg.,
contour along a wing flap at several locations, thickness of a material at
several locations).

Why:

» To monitor several similar quality characteristics simultaneously using a
limited set of control charts, identify out-of-control and other nonrandom
conditions for any of the characteristics, and take action to correct any non-
random behavior.

» To monitor part-to-part variation.
» To monitor, understand and reduce within-part variation.

* See section 1.12.

Discussion:

 This chart is often used for applications such as a part feature measured at
two or more locations, concentration levels at several locations in a tank, the
same feature produced on several parts by a multiple spindle machine, and
so on. (Note: The parts produced at the same time by one machine with
multiple spindles could be viewed as a “super-part” that then becomes the
object of the IX and MR charts.) It can also be used whenever within-sub-
group variation does not include all the normal process variation. For ex-
ample, when doing injection molding the mold may have six cavities, and
these six parts might be used as a subgroup. There is more variation from
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setup to setup than among these six parts. The Three-Way chart could prove
beneficial in this situation.

How:

» Define the feature to be measured and the measurement locations.
» Take measurements on each part at the specified locations.

» For the IX chart, average all the measurements for a given part and then plot
these averages for each part.

» Create the MR chart in the usual fashion by taking the positive difference
between successive IX values.

« Calculate control limits for the MR and IX charts.

* If points are statistically out of control, then investigate and identify the rea-
sons for the out-of-control condition and remove the cause.

» Create the R chart by calculating the range of the measurements on each
part. Examine the within-part variation portrayed on this chart and investigate
ways to reduce the variation.

Conditions:

» The characteristics to be monitored are similar (that is, they are of the same
type and unit of measure). They are the same feature, but measured at
selected locations.

» The measurements are taken at the same locations on each part.

Example:

Suppose flange angle is measured at three locations along the length of a spar, as
described in section 1.12.9.1. The same data is used, but the approach presented
here is to use the Three-Way chart, as shown in figure 1.12.9.2.1.

Interpretation of the Charts:

The IX chart plots the averages of the angle measurements at the three locations
along the spar. No out-of-control conditions appear. These average measurements
mask the variation among locations for any individual spar, but the variation can be
observed in the Group chart, an R chart, or a Tier chart.

The MR chart shows spar-to-spar variation, since the MR values are simply the
differences between successive spar averages. Subgroup 14 on the MR chart
indicates an out-of-control condition. It suggests that there is a difference between
the average angle for spar 13 and spar 14. This then requires further investigation.
A difference in averages can occur in several ways. It could mean, for example,
that an angle at one location is vastly larger for spar 14 than spar 13, causing the
average to be larger, or it could mean all three angles are sufficiently larger, also
causing the average to be larger. By looking at the Group chart in figure 1.11.4.1,
or the individual charts in figure 1.12.9.1.2, it can be seen that all three angle
measurements are small for spar 13 and larger for spar 14. Of course, the reason
for this should be examined.

Additional graphical methods can be very useful in analyzing data of this sort.
These include, but are not limited to, the R chart (with or without control limits), the
Tier chart, and the Group chart on ranges. Again, new developments are being
steadily made in the area of multiple characteristics process control, so recent
statistical and quality literature should be reviewed.
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Figure 1.12.9.2.1
The Three-Way Chart for Flange Angle at Three Locations—
The IX chart plots the averages of angle measurements at three locations along a spar. The
Moving Range chart plots the positive differences in the successive averages in the IX
chart. The Range chart plots the range of measurements on each spar.
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1.12.9.3 SPC Using Spline Fitting

What:

* Individual X and Moving-Range control charts for the situation where a fea-
ture is measured at several locations on a part. For each part the plotted
point on the IX chart is a special statistic called an aspect (or difference
statistic). Aspects are discrepancy measures that compare a spline curve fit
to the set of individual measurements from a part to a standard. The standard
is often the engineering nominal or the average of the splines fit to other
sampled parts. An example aspect is the maximum absolute deviation of the
part’s spline curve from nominal. Another is the maximum absolute difference
between a given part's spline curve and the average spline for a set of parts.

When to use:

» Mostly when monitoring a geometric key characteristic requiring multiple
measurements per part at different locations, as

» Contour around the periphery of a part (e.g., door, window, cowling, body
section, or radome).

* Width of a beam.
» Bend angle along a part.
e Gap around a door.

How:

* By fitting a smooth curve (a spline) to the multiple measurements on a part
expressed as a function of location, then computing one (sometimes more)
key aspect of the geometry of the curve, such as maximum absolute deviation
from the average spline, and then plotting the value of the aspect on an IX
chart. The MR chart is then constructed in the usual manner. (See figures
1.12.9.3.1,1.12.9.3.2,1.12.9.3.3,1.12.9.3.4))

Note: It is highly recommended that the complex calculations and preparation
of charts be accomplished using SPC software.

Conditions:

» Multiple measurements per part that are commensurate (have same units,
such as inches).

* Measurements have a geometric context (measurements are taken at
approximately fixed locations on each part).

» Some correlation is expected among measurements at “near” locations.

» The multiple measurement locations can be imagined as lying along a linear
axis. Think of the geometry of the part as a “connect-the-dots” picture with a
dot at each called-out measurement location; if a string is imagined connect-
ing the dots in sequence, then that string, straightened, becomes the linear
axis for the spline chart, and the distances along the string become the
locations for the spline fitting. (See figure 1.12.9.3.2.)

 Since the locations can vary from part to part we need the measurements of
the locations for each part (that is, where are the locations on each part
where measurements are taken).

» The spline method fits a curve based upon the measurements at the various
locations. Consideration needs to be given to such things as measurement
density, part geometry, and data variability and correlation.




To Calculate Plot Points:

Use a computer with spline-fitting software. Once the spline is fit to measurements
from the current part, a choice of aspects (or differences) is available for control
charting, but each aspect must be programmed. The most useful aspects appear
to be maximum deviation from nominal (or average spline), total absolute deviation
from nominal (or average spline), and mean absolute deviation from nominal (or
average spline), because these aspects will be closely related to specification
limits. However, depending on the quality characteristic of the part, other aspects
of geometry may be chosen to monitor. For example, if waviness is a problem in a
sheet-metal skin on an assembly, an overall measure of curvature of the spline
might be a good choice.

Once the aspect is chosen, the 1X-using-MR and MR chart combination is usually a
good choice for charting the aspect. In some applications one might want to chart
more than one aspect; for example, mean deviation from average will show if the
part is too big or too small compared with its history of production, but will not show
an out-of-control condition for a part that is tapered (too wide at one end, too
narrow at the other, but all right on the average).

If both missized and misshaped parts are of concern, two pairs of IX-MR control
charts might be used: one on the mean deviation of the spline from average, the
other on the maximum deviation from average. (In either case, “average” might be
replaced by “nominal” if the measurement system permits reference to an actual
nominal, as might be the case if measurements are obtained at a check fixture or
from a programmed coordinate measuring machine. But be aware that setting up
such measurement systems can be costly and may not be needed for purposes of
SPC))

Although it is tempting to extract as much information as possible from the fitted
spline, the SPC coordinator should be judicious in adding more charts, bearing in
mind that one reason for using spline fitting rather than a pair of IX-MR charts at
each required location is to reduce the number of charts to a level that can and will
be used on the shop floor. Unless unusual problems are expected or encountered,
or unless the shop itself requests more charts, one or two aspects should be
adequate.

Aspects other than the mean may be rather likely to have skewed distributions.
When sufficient data have accumulated to determine whether this is so, it may be a
good idea for the SPC coordinator to consider whether a mathematical transforma-
tion (such as the logarithm) of the aspect might be more appropriate for the IX-MR
chart.

Example:

A drawing of a cowling calls out 20 locations at which gap measurements must be
taken around the periphery. Itis decided to use control charts based on a spline fit
to the 20 locations; the aspects of the spline selected for charting are mean devia-
tion from average and maximum absolute deviation from average.

In this sample case, data consisting of the 20 gap measurements are available on
40 production cowlings.
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Gap Measurements on Cowl Number 21
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Figure 1.12.9.3.1

Spline Fit to 20 Gap Measurements on Cowl Number 21

Gap 0.21¢

i 2 383 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Cowl Location

Figure 1.12.9.3.2

Spline-fitting software is used to fit each set of data (40 curves in all, one for each
cowling). As an example, figure 1.12.9.3.1 shows the gap measurements for 20
locations on cowling number 21, and figure 1.12.9.3.2 shows the spline fit to those
20 gap measurements at those locations (in this situation the spline went through
each of the 20 measurements, but this need not always be the case).

The first 20 cowlings are selected to establish control limits and the process aver-
age. A spline is calculated for each of the first 20 cowlings. The 20 splines from
these first 20 cowlings are averaged point by point to determine a baseline average
spline (figure 1.12.9.3.3 shows the average spline).

Then each of the 40 splines is matched with this average spline. In each of the 40

cases, the software compares the individual spline with the average and computes
the average difference between them and the maximum difference. The result is a

series of 40 average differences and 40 maximum differences. Each series is used
to produce an IX-MR pair of control charts. Figure 1.12.9.3.4 shows sample IX-MR

charts for the maximum difference.

In routine shop-floor use, the four control charts (one pair of IX-MR charts for
maximum deviation and one pair for the average difference) would be monitored by
operators. Only when an out-of-control condition is noted would the actual spline
curves necessarily be displayed, for these may help determine what or where the
problem is. For example, if the maximum difference IX chart is out of control, the
spline (figure 1.12.9.3.3) for cowling 21 shows that several measurements between




locations 13 and 16 are much larger than usual, and this fact may point directly to
an aspect of tooling, such as a broken or worn pin, or an operator failure to con-
strain the part during assembly as usual.

The control charts in figure 1.12.9.3.4 show that on cowling number 21, the maxi-
mum deviation exceeds the control limits established on the IX chart. Of the first
40 cowlings measured, this is the only one for which this aspect is out of control.

It is interesting that nearly all of the recent production has had below-average
maximum deviation This could point to a process improvement, possibly due to
changes made as a result of investigating the out-of-control condition in the 21st
cowling.

Standard practice would be to produce the actual spline curve to compare with the
average spline; figure 1.12.9.3.3 plots both together. It is immediately obvious that
the maximum difference of about 0.053 inch occurs near measurement location 15,
and that the dimension is much larger than usual at all locations from 14 through
16. This information should be invaluable for investigating the event.

If, instead of using the spline fitting, individual IX-MR charts had been maintained,
one pair for each measurement location, this particular problem would probably
have been detected. However, many false alarms might also have had to be
investigated, and in any case, the production and monitoring of 20 pairs of charts
for one key feature on one manufacturing process is burdensome.

Comparing Spline Fit for Gap Measurements on Cowl 21
With Average Spline for First 20 Cowls

0.27
4 Gap measurements

0.25 A by location for Cowl 21 ~

Spline for
Cowl 21

0.23+ Maximum deviation from average spline
Gap 0.21 /
i 9: Average spline for
0.17 A first 20 Cowls
0.15 T T T T T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Cowl Location

Figure 1.12.9.3.3
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IX Chart for Maximum Deviation
Between Each Cowl Spline and the Average Spline
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1.12.9.4 Hotelling T? Multivariate
Control Chart

What:

*A single control chart for monitoring the process average for several character-
istics simultaneously. It is similar in appearance and use to a standard control
chart. The Hotelling T? Multivariate chart described here is one example of a
multivariate chart that may be used to help identify special causes of variation
resulting from the joint behavior of all the characteristics.

*The T?Multivariate chart has only an upper control limit. Values beyond the
control limit indicate out-of-control conditions. The values plotted are
Hotelling T2 statistics, which are calculated using measurements of all the
characteristics. Multivariate control charts for variability are also available but
are not described here. Even though the T2 chart is useful in monitoring
several characteristics simultaneously on a single chart, the T2 statistic is
simply a calculated number to compare with other T2 values and a control
limit. The T2 value is dimensionless and therefore has no physical interpreta-
tion.

When:

» Two or more quality characteristics jointly affecting overall part quality are
measured on the same part (e.g., hardness, brittleness, and tensile strength
of a part).

» A key quality characteristic is produced by several process streams (e.g.,
depth of similar grooves cut by different spindles).

» A key quality characteristic or feature is measured at several locations (e.qg.,
contour along a wing flap at several locations, thickness of a material at
several locations).

Why:

» To monitor several similar quality characteristics simultaneously using a single
control chart, identify out-of-control conditions, and take action to correct any
nonrandom behavior.

» See section 1.12.

How:

« Identify the characteristics that, in combination, determine the overall quality
of the part or process. For example, four similar dimensions at four locations
on a part; or the two dissimilar key characteristics, hardness and shear
strength, of a bolt.

» Determine the subgroup size and sampling frequency (subgroup size is
often 1).

» Take measurements and record.

 After 20 subgroups are collected (although 30 to 40 are preferable), compute
the upper control limit.

« Compute a Hotelling T? value for each subgroup. This value is computed from
the measurement data for all the characteristics under consideration. The
formulas for computing T2 can be found in the references.

* Plot the Hotelling T2 value on the control chart.

» Examine the chart for out-of-control subgroups which would trigger an analy-
sis to identitfy causes.
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Figure 1.12.9.4.1
T2 Control Chart for Flange Angle at Three Locations

Note: It is highly recommended that the complex calculations and preparation
of charts be accomplished using SPC software.

Conditions:

» Correlation between the characteristics being measured is present or sus-
pected.

* Assumes the measurement data follow a multivariate normal distribution (see
the annotated bibliography for reference sources). Current research indicates
the Hotelling T2 statistic is sensitive to violations of the normality assumption.

» Assumes that the quality characteristics from one part to another are inde-
pendent.

Example:

Suppose the flange angle is measured at three locations along the length of a spar,
as discussed in section 1.12.9.1. The same data is used, but the approach pre-
sented here is to use the T2 Multivariate chart. This chart is shown in figure
1.12.9.4.1.

Interpretation of the Chart:

The T2 Multivariate chart has only an upper control limit. The values plotted for each
subgroup are Hotelling T2 statistics, which incorporate information from all three
locations into one value. Point 18 clearly shows an out-of-control condition. This
indicates that even though the individual charts are in control at point 18 (see figure
1.12.9.1.2), they are operating jointly in an unusual way.

To uncover what may be occurring, several approaches are available, two of which
are shown in figures 1.12.9.4.2 and 1.12.9.4.3. Figure 1.12.9.4.2 shows all three




individual plots overlaid. The three locations appear to be correlated, since they
tend to follow each other. In examining point 18 specifically, two things can be
observed. The first is that location 2 does not follow locations 1 and 3. Second,
locations 1 and 3 are collocated and are at a significant distance from location 2.
These conditions are unusual compared to the rest of the subgroups.

To further investigate and gain insight, scatter diagrams comparing the locations
can be used. Figure 1.12.9.4.3 shows three scatter diagrams of the measurements
of locations 1, 2, and 3 against each other in pair-wise fashion. In examining the
scatter diagram of location 1 against location 2 there is one point that does not
seem to fit the apparent relationship. This point corresponds to subgroup 18. The
scatter diagram of location 2 against location 3 also shows a point different from
the rest. Again, it corresponds to subgroup 18. On the other hand, the scatter
diagram showing location 1 plotted against location 3 shows point 18 (circled) lying
along the established pattern of correlation between these two locations. This
coincides with the results as observed in the overlay chart in figure 1.12.9.4.2. This
information indicates that an assignable cause probably occurred at Location 2 and
should be investigated.

Note: The scatter diagrams also visually verify the correlation between the
pairs of locations.

0.54 - . e Location 1
point 18 * + Location 2
i * Location 3
0.52
Flange
Angle 2
0.48 o
g
0.46 -
0 10 20 30 40
Subgroup

Figure 1.12.9.4.2
Individual Plots for Flange Angle for Three Locations Are Overlaid

For discussion of the Hotelling T? chart see the following references:

Montgomery, D. C., Introduction to Statistical Quality Control, Third Edition, John
Wiley & Sons, Inc., 1996.

Scholz, F W., and Tosch, T. J., “Small Sample Univariate and Multivariate Control
Charts for Means,” Proceedings of the American Statistical Association, Quality and
Productivity Section, 1994.

Sulivan, J. H., and Woodall, W. H., “A Comparison of Multivariate Control Charts for
Individual Observations,” Journal of Quality Technology, Vol 28, No 4, 1996.
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Plot of Location 1 Versus Location 2

0.53
[ ]
0.52 - .
hd [ ] ° [ ] [ ]
0.51- ° . ° °
. i L4 °
Location 2 o °
0.50- .o .o o o °
:° ° point 18 @
0.49- . oo
[ ]
[ ] ° [ ]
0.48- ° °
[ ]
[ ]
0.47- | ! ! ! ! !
0.48 0.49 0.5 0.51 0.52 0.53
Location 1
Plot of Location 2 Versus Location 3
0.54 @ o
[ [ ]
point 18 . ® .
0.52 |+ ® o °
[
. .
Location 3 o ° e o ®
=l o ® o o
° o« * o °
[}
0.48 | ¢ i
[ J
[ )
Y [ ]
0.46 |- hd
| | | | | | |
0.47 0.48 0.49 0.50 0.51 0.52 0.53
Location 2
Plot of Location 1 Versus Location 3
0.54
[ ]
. point 18 @
[ ]
0.52 | . o ®
[} [}
° [
. o ©
Location 3 05 L ° e . PP °
[}
° [ ] .. [ ] [} [
o9 °
0.48 | ° o
[}
[
046 | o ®
| | hd | | | |
0.48 0.49 0.5 0.51 0.52 0.53
Location 1

Figure 1.12.9.4.3

Scatter Diagrams for Flange Angle on 40 Parts, Comparing Three Locations




1.12.9.5 Multiple Characteristics
Summary Table

TYPE OF
CHART X-AXIS DESCRIPTION LIMITATIONS Ll de
TERISTIC
Separate control Time Used to statistically - Need to keep e One
charts for each control each characteris- several charts feature,
characteristic tic individually several
* Does not evaluate locations
Signals special causes joint impact of
of variation for each several character- e Several
characteristic separately istics features
Three-Way chart Time Used to control the * Collapses all e One
average of a set of location measure- feature,
similar measurements ments into one several
value (i.e., the locations
The IX-MR portion average)
monitors part-to-part
and batch-to-batch * Does not take
variation correlation among
locations into
The R chart monitors account
within-part/batch
variation * |dentifies an out-
of-control
condition, but not
the source of the
problem
Spline SPC For IX-MR Identifies special causes = Usually used when = One
charts chart: time of variation by compar- a commensurate feature,
ing a spline, fit to a geometric several
For Spline part’s measurements, to characteristic is locations
charts: a standard. being measured at
location several locations
One pair of IX-MR per part.
control charts required
to identify the out-of- * Need a computer
control conditions. to calculate
splines and aspect
The spline graphs help in statistics, as well
identifying the source of as to display data
the problem. and splines.
May be used when * Need to carefully
characteristics are identify aspect
correlated or statistics to be
uncorrelated. used.
Hotelling T2 Time Identifies special causes = Need computer to e One
Multivariate of variation due to joint calculate plot feature,
chart behavior of several points and control several
characteristics limit locations
Only one chart required « |dentifies an out- e Several
of-control features

Identifies special causes
of variation from joint
behavior of several
characteristics

Use when characteris-
tics are correlated;
however, they can be
independent

When out-of-control
subgroups are found
scatter plots may be a
useful dianostic tool

Figure 1.12.9.5.1

condition, not the
source of the
problem

Investigation of
individual
characteristics
may still be
required to assign
special causes
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CHART

X-AXIS

DESCRIPTION

LIMITATIONS

TYPE OF
CHARAC-
TERISTIC

Location charts

Location

e Used to graphically
display data from several
locations on one chart

* To observe the distribu-
tion of measurements at
each location

¢ |dentifies locations with
excessive variability or
that are not centered on
target value

* To observe part measure-
ments by location and
compare specification
requirements

e Cannot detect
changes over time

* Not a control chart

(However, the
Location Box-
Whisker chart can
be used as a control
chart as in sect.
1.11.5)

* One feature,
several
locations

Group chart

Time

e Graphically displays data
from several locations on
one chart across time

¢ |dentifies locations that
are consistently different
from other locations or a
target

¢ |dentifies trends or
changes occurring in
locations across time

¢ |dentifies relationships
among the different
locations

* Not a control chart

e Should be used in
conjunction with
other control or
exploratory charts

Figure 1.12.9.5.1 (Continued)

* One feature,
several
locations




1.12.10 The p Chart

What:

« An attribute control chart for the fraction defective.

* The term defective is used here in its common and broad sense. In this case
it can be used to mean nonconformance to specification, but it can also be
used to mean that customer expectations were not met. The p, np, ¢, and u
charts can be used whenever there are two possible outcomes, where items
can be placed into two categories and counted (such as pass/fail, high/low,
and so on).

» Subgroup samples are taken from groups of items or lots.

When to Use:

» When variable data cannot be obtained for a key characteristic.

* When monitoring the fraction defective and where subgroup sizes may vary.

To identify any sudden changes to quality levels, positive or negative.

* When assessing the effects of upstream process improvements.

How:

» Decide upon an appropriate subgroup size so that at least one (and prefer-
ably more) defective item will likely be present.

» Count the number of defective items in the subgroup samples and then plot
the proportion defective.

Note: The number of defects per item is not counted, only the number of
defective items.

 Calculate the centerline and the control limits after a sufficient number of plot
points are obtained (after 20 plot points is recommended).

0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00 0

Percent
Defective

\ﬂm.ﬁx * Es»f_ **** x/*\/ °

55 LCL

Subgroup Number

Figure 1.12.10.1

To identify characteristics that should be monitored on variable control charts.

When tracking the quality level of a process (before any rework is performed).
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Conditions:

* In order to be of help, there should be some defectives in each observed
subgroup.

» The higher the quality level, the larger the subgroup size must be to contain
defectives. Consult a statistical text for estimating the needed subgroup size
to ensure a sufficiently high probability that the subgroup will contain at least
one defective.

To Calculate Plot Points:

The p chart plot point is the number of defective units in a subgroup divided by the
subgroup size (n); that is, the proportion defective. The centerline is the total
number of defective items divided by the total number of items inspected for all plot
points. The control limits will change with the varying subgroup sizes.

Varying subgroup sizes result in varying control limits. However, if the subgroup
sizes do not vary greatly, constant control limits are permitted. Use n (average
subgroup size) in place of nin the calculations.

Control limits . Subgroup

Total number of

ucL=p+3 | PU=P
n.

Min =0, Max = 1

defective items

where

Number of

pP=r———— defective units
Total number of in subgroup i Constant
I items inspected pp=—————— p
_ = — ! Subgroup v or
LcL=p-3 | P(1-P) _dy+dy+atdy size (n) ar%/lng
n, Ny + Ny +ot Ny d

k = number of subgroups I

Figure 1.12.10.2 Formulas for the p Chart — Control limits
are calculated separately for each plot point.

Example:

In a sheet metal assembly shop a common process is bucking rivets. Because of
the combined variation in the rivets, the drilled holes, and the bucking process,
there are quality problems. After the rivets in an assembly have been bucked into
place they are checked for nonconformance. A p chart is used to track the first-
time-through fraction defective (first-pass yield).

2

—/

Figure 1.12.10.3 Cross Section of Sheet Metal Plates
With Countersunk Holes for Rivet Installation




Subgroup 1 Subgroup 2
Number of defectives (d) = 6 Number of defectives (d) = 1
Number of rivets checked (n) = 92 Number of rivets checked (n) = 36
Proportion defective (p = d/n) = 0.07 Proportion defective (p = d/n) = 0.03

L p plot points J

Figure 1.12.10.4 Proportion Defective of Bucked Rivets for Two Subgroups

Figure 1.12.10.5 shows a completed p chart that was started using the data in
figure 1.12.10.4.

Interpretation of Chart:

Plotted on the chart in Figure 1.12.10.5 is the proportion of defective bucked rivets
in each subgroup. Points higher on the chart represent a greater proportion of
defectives. The calculation formulas are in the upper left-hand corner. The
centerline, 0.067, means that on average, 6.7% of the bucked rivets are defective
before any rework is done. The control limits vary inversely with the square root of
the subgroup size: the larger the subgroup size, the tighter the control limits.

The first half of the chart seems less stable than the latter half. Points 3 and 5
exceeded the upper control limit, and point 9 fell below the lower control limit.

The defect log sheet below the control chart shows the actual type of defect found
with the rivets. The totals column serves as a Pareto analysis (see Pareto Analysis,
section 1.6). The largest contributors to the defect count are tool/die marks, fol-
lowed by gap and cracking problems.

Recommendations:

This process is not in statistical control, but more importantly, the overall 6.7%
defectives is not acceptable and process improvement is needed. The defective
bucking bars were replaced after plot point 5. This seems to be the only improve-
ment to date. The next areas to investigate are the cracks, gaps, and head height
problems. The team should then brainstorm and test potential solutions to the
crack problem. If force is thought to be a major contributor to cracks, then collect
data on the forces used. Compare the resulting distribution of forces to the speci-
fied forces required to buck the rivets. This will help in adjusting the process so
correct forces are used. Then set up an Xand R chart monitoring the actual force
used over time. This will help control the process and should lead to less variability
and fewer defects. Investigation of other process improvements should follow.

Note: There is no Cp or Cpk calculation for a p chart.
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Average proportion uCL LCL Average An Sample . Chart
defective 067 varies varies Sample Size e 165 Frequency daily Type p
Part # R11-A304
Chart # 3:0'9
Dept# _ — 50
Machine# VA
Characteristic Proportion defective
p Chart Formula 45
_ Total number of defective items
p= Total number of items inspected 0
1 dy + dp +...+dg '
= Ny + Ny +...+ Ny
UCL= p + 3 PO-P) 35 )
n
i
LCL= p -3 PO-P) ’]‘
n
i .30 il
n; = subgroup size 11
k = number of subgroups ,’ l|
* Control limits are calculated .25 [
separately for each plot point. " ll ==
11
Control Limit Calculation 20 ,' ‘l
for Plot Point 1 : 7 T I
| | |
] \\ i |l | ‘\ | i
UCLp = 067 +3 7'067“;’67) =5 | Lo ,, l‘ ’,‘ Y
LCL, = .067-3 |-2670-067) _, ‘ uet
i o : M
.10 i 1 |
I \ - 1\
p- 243 .067 =5 y = : X = P
3624 05 A\ f \ | / \ / \
\ / / \
] ] \
] \ I/ \
1 T AN/ \
11 ] J LCL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 TOTALS
Number of Defectives 6 1 [41[13[60|40|22|0 |3 |14| 9|3 |2 |0 |5 |3 (8|3 [0 f[4]6]|0 243
Sample Size (n) 92 |36 [212| 86 |172| 448|564 | 48 [594 530|188 |15 |97 |36 |65 [ 54 [82 |67 |18 |52 | 72 | 96 3624
Proportion Defective (p) .07 .03 [.19|.15|.35]|.09|.04 [ 0 [.01]|.03|.05|.20 |.02 |0 |.08.06]|.10|.04| 0 [.08.08[0
ucL 15 (.19 |.12 (.15 |12 (.10 |.10 .18 |.10 |.10 | .12 |.26 |.14 |.19 (.16 | .17 (.15 |.16 (.24 | .17 [ .16 |.14
LCL 0 0 (.02]0 0 [.03|/04(0 |.04[03].01|0 0 0 0 0 0 0 0 0 0 0
Defect Log Sheet
Tool/Die Mark 411125|9 [18|23| 5 1 2 4 112 95
Cracked 1 10(1 |8 (4|4 1134 |1 1 2 1 41
High Head 2 (25|83 1121 1 1 2 38
Overdriven 2 2 1 1 6
Clinched 1 1 11 2 2 1 18
Gap 6|1]6|10]2 11713 2 2111 3 45
Figure 1.12.10.5 p Chart




1.12.11 The np Chart

What:

« An attribute control chart for the number of defectives.

When to Use:

* When variable data cannot be obtained for a key characteristic.

» When monitoring the number of defectives, and where subgroup sizes are
constant.

To identify any sudden changes to quality levels, positive or negative.

* When assessing the effects of upstream process improvements.

How:

» Decide upon an appropriate subgroup size so that at least one (and prefer-
ably more) defective will likely be present.

» Count and plot the number of defective items in the subgroup samples.

Note: The number of defects per item is not counted, only the number of
defective items.

 Calculate the centerline and the control limits after a sufficient number of plot
points are obtained (after 20 plot points is recommended).

UCL
Number of
Defectives _
np
0 23 LCL
Subgroup Number
Figure 1.12.11.1 np Chart
Conditions:

« In order to be of help, there should be some defectives in each observed
subgroup.

» The higher the quality level, the larger the subgroup size must be to contain
defectives. Consult a statistical text for estimating the needed subgroup size
to ensure a sufficiently high probability that the subgroup will contain at least
one defective.

To identify characteristics that should be monitored on variable control charts.

When tracking the quality level of a process (before any rework is performed).
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To Calculate Plot Points:

The np chart plot point is the number of defectives found in each subgroup. The
centerline is the total number of defective items divided by the total number of
subgroups. The control limits will remain the same because the subgroup sizes
remain constant.

Total number

UCL=np+3{np(1- 5) _  of defectives

p e —
LCL=np-3{np(1-p) Total number d, = Number of | Constant
np . of subgroups defective on: an

where units in
d1 + d2 +..+ dk = M subgroup i
p=— k
kn
where
Min =0, Max =n k = number of subgroups

Figure 1.12.11.2 Formulas for the np Chart—
Since n is constant, only one pair of control limits needs to be calculated.

Example:

Testing the quality of ball bearings requires
dimensional tests, as well as a noise test.
The dimensional tests produce variable
data; the noise test requires a trained ear to
“listen” for defects such as concentricity, out-
of-round, and surface blemishes. Each day,
two subgroups of 50 ball bearings are noise-
tested and an np chart is kept on the num-
ber rejected from each subgroup.

Ball bearing

The data in figure 1.12.11.3 represent the number of defective ball bearings from
two subgroups.

Subgroup 1 Subgroup 2

Number of balls tested (n

)= 50 Number of balls tested (n
Number of defective balls (d ) 2

(n)
Number of defective balls (d )

L np plot points J

Figure 1.12.11.3 Number of Defectives in First Two Subgroups

= 50
= 4

Figure 1.12.11.4 shows a completed np chart that was started using the data in
figure 1.12.11.3.




Interpretation of Chart:

Plotted on the chart in figure 1.12.11.4 are the number of defective ball bearings
from a constant subgroup size of 50. Points higher on the chart represent a greater
number of defects in a subgroup. The calculation formulas are in the upper left-
hand corner. The centerline, 2.9, means that on average there are 2.9 defective ball
bearings per subgroup of 50 bearings. The control limits are constant because the
subgroup size (50) is constant. The formula for the lower control limit produces a
negative number, so it is set equal to zero.

The process is in a state of statistical control. There are no significant runs, trends,
or extreme points.

The defect log sheet is not filled in because the defective ball bearings were not
categorized into types of defects. This data should have been collected so a Pareto
analysis could be performed.

Recommendations:

Because the process is in control does not mean it is acceptable. There is still an
average of 2.9 defective per 50 ball bearings tested, or 5.8%. The next step would
be to complete the log sheet for future subgroups and use a Pareto analysis (see
section 1.6) to find the major defect causes and eliminate them from the process.

Note: There is no Cp or Cpk calculation for an np chart.
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np Chart

|Average number of UCL LCL Sample Size Sample Chart
defectives 9 g 7.9 0 n= 50 Frequency  Twice daily Type np
50
Part # ETR30NT10
Chart# __4
Dept# 3
Machine# 473 45
Characteristic _Noise
np Chart Formula 40
np = Total Defectives
Total number of subgroups
35
dy + dy +...+dy
e
where 30
k = number of subgroups
5=d1+d2+...+dk =E »5
kn n
UCL= np + 3 | np(1 - p)
20
LCL= np - 3 j nB(1 - p)
15
- _ 63
np= —= 29
P 22
-2
= 22 _ o8 10
50
ucL
ucL np= 29+3{29(1-.058) =79 5 AN / \\
\ / / np
LCL np= 2.9 - 3 {2.9(1-.058) N — / A\ +
= negative number (set to zero) 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 18 19 20 21 22
TOTALS
Number of Defectives (np) 2(4|4|8|6|2|3|0f0|83|[1|5|4|7|3|2|4]|1|0|5]3]1 63

Sample Size |50 (50 |50 |50 |50 [ 50 |50 [50 | 50 | 50 [50 |50 |50 |50 |50 |50 |50 |50 |50 |50 |50 |50 1100

Date 21 |2/2 | 2/3 |2/4 |2/5 |2/6 | 2/7 | 2/8 | 2/9 |2/10 [2/11 |2/12 [2/13 |2/14 [2/15 [2/16 [2/17 [2/18 |2/19 |2/20 [2/21 [2/22

Defect Log Sheet

Oversized

Undersized

Pitted

Chatter

Out-of-round

Figure 1.12.11.4 np chart
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1.12.12 The c Chart

What:

» An attribute control chart for the number of defects per unit.

* A unit can be a single part, an assembly, an area of material, or any rational
grouping of units in which the likelihood of defects is constant from unit to unit.

When to Use:

When variable data cannot be obtained for a key characteristic.

» When monitoring the number of defects found per unit and the unit size is
constant from subgroup to subgroup.

« To identify characteristics that should be monitored on variable control charts.

When tracking the quality level of a process (before any rework is performed).

To identify any sudden changes to quality levels, positive or negative.

* When assessing the effects of upstream process improvements.

How:

» Decide upon an appropriate definition of a unit. As a rule, the average number
of defects per unit (or grouping) should be at least five.

» Count and plot the number of defects for each unit.
 Calculate the centerline and the control limits after a sufficient number of plot
points are obtained (after 20 plot points is recommended).

Conditions:

» Constant unit size for all subgroups and one unit per subgroup.
» Several different types of defects per unit are permissible.

« In order for this type of analysis to be of help, there should be some defects in
each observed unit.

UCL
Number
of Defects c
per Unit

LCL

0
Subgroup Number

Figure 1.12.12.1 c Chart
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To Calculate Plot Points:
The c¢ plot point is the number of defects counted on a unit. The centerline is the

total number of defects across all units divided by the total number of units. The
control limits will remain the same because the subgroup size remains constant.

Subgrou

. UCL =3+ 3\1? = Total number of defects 6, = Number
_ — Total number of units of defects One
LCL=c- 3\1: counted Unit
C‘1 + 02 +...+ Ck on unit i
Min=0 =Tk
where
k = number of subgroups (units)

Figure 1.12.12.2 Formulas for the ¢ Chart—
Since unit size is held constant, only one set of control limits needs to be calculated.

Example:

The data in figure 1.12.12.4 represent the types of defects found on the first two
boxes similar to the one pictured in figure 1.12.12.3. Box 1 has nine defects and
box 2 has 12. Notice that the types and quantity of defects are different for the
two boxes; nevertheless, the total number of defects counted on a box is what is
plotted on the ¢ chart.

Figure 1.12.12.5 shows a completed ¢ chart that was started using the data in
figure 1.12.12 4.

Missing rivet— —— Not flush
Eyebrows r Misfair Oversized hole
Fish eyes 2 ikt b b
in paint

Rivet too low

o
oo "o
o
o
o
o

ooooooooooooooooooo

e o Gh
0000000000000 00O00O00000000O0O0OO[° =
§ §§ §§ Loose rivet
° ol o Scratch
Too much ] - & s . .
overspray ——f—= ok i Failed resistance test
o olo o
Too heavy —p—* & -G Mislocated
(00 000000000[000000000000000 00 00[%
Not square

Figure 1.12.12.3 Potential Defects on a Sheet Metal Box




Box 1 Box 2

Defect type No. of defects Defect type No. of defects
Eyebrows 1 Not flush 3

Not flush 1 Misfair 1
Oversize hole 4 Fish eyes 6
Scratch 2 Overspray 2
Overspray 1

Total (c) = 9 Total (c) = 12

L c chart plot points J

Figure 1.12.12.4 The Number of Defects per Unit

Interpretation of Chart:

The chart shown in figure 1.12.12.5 plots the number of defects counted on
sheet metal boxes. The calculation formulas are in the upper left-hand corner.
The centerline, 5.1, means that there is an average of 5.1 defects per box. The
upper control limit, 11.9, represents three standard deviations above the
centerline. It means that, given the current process, the number of defects on
any one box should rarely exceed 11.9. The formula for the lower control limit
produces a negative number, so it is set equal to zero.

The defect log sheet below the control chart shows the types of defects found
on each box. The totals column serves as a Pareto analysis (see section 1.6).
The three largest contributors to the defect count are fish eyes, oversized holes,
and overspray.

Plot points two and six exceeded the upper control limit. This means that there
probably were special causes of variation. According to the defect log sheet,
box 2 contained six locations with fish eyes, and box 6 contained 10. After
investigation, the cause of the fish eyes (a condition where the paint will not
adhere) was traced to small particles of wax that were introduced into the paint.
It was discovered that the wax came from disposable cups used when mixing
the paint. At that point, wax cups were eliminated from the mixing process.

Another large contributor to defects was oversized holes. An operator
discovered that one of the drill bits used in the process was slightly larger than
indicated by the part mark. This bit was disposed of.
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c Chart

Average number of ucL LCL Sample Size Sample
defects 5 4 11.9 n = one unit Frequency C
Part # 144N7236-36
Chart # 57 50
Dept#
Machine# __ NA
Characteristic __Number of defects per unit
45
c Chart Formula
c= Total defects 4
Total number of units
C1+ C2+...+Ck 35
h k
30
UcL=c+3+c
25
LCL=c-3+¢C
20
15
TANY /
UcL =5.1+3V5.1 = 11.9 \Q‘ \ UCL
10 7 A
\ JARR)
\ \
\
c=102 _ 594 ! c
20
N\
LCL: 0 2 3 4 5 6 7 8 9 10 11 12 13 22
TOTALS
Number of Defects (c) 12(7|7|8|14[3|5[6]|6|4]1 102
Date 8/3 |8/4 |8/5 |8/6 |89 |8/10 [8/11 |8/12 [8/13 |8/16 [8/17
Defect Log Sheet
Fish Eyes 6 10 16
Eyebrow 1 1 1 2 7
Not Flush 3 1 1 7
Misfair 1 1 1 1 5
Oversized Hole 3|14]13|2 17
Rivet too High 1 1 1 3
Missing Rivet 1 2
Scratch 1 1 5
Failed Resistance T est 1 2
Mislocation 1 1
Overspray 2|12|1[1]2[2]3[4]3]2]1 37

Figure 1.12.12.5 c Chart




Recommendations:

After the sixth box, the fish eyes and oversized holes were no longer a problem.
After the corrections were made, the defect level dropped significantly.
Therefore, the centerline and control limits should be recalculated without points
2 or 6 in the calculations. Assuming all defects are equally weighted, the next
problem to address would be the overspray. Use a defect concentration
diagram or perform a Pareto analysis to find which areas on the box are prone
to overspray. Brainstorm ways to eliminate the problem, do a cause and effect
analysis or some simple experimentation, and change the process so overspray
is no longer a problem. Continue to address each of the problem areas until
defect-free boxes are consistently being produced.

Once the processes have been improved, control limits should be recalculated.

Note: There is no Cp or Cpk calculation for a ¢ chart.
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1.12.13 The u Chart

What:

» An attribute control chart for the average number of defects per unit.

* A unit can be a single part, an assembly, an area of material, or any rational
grouping of items in which the likelihood of defects is constant from unit to
unit.

When to Use:

* When variable data cannot be obtained for a key characteristic.

» When monitoring the average number of defects found per unit and the
number of units may vary from subgroup to subgroup.

To identify characteristics that should be monitored on variable control charts.

When tracking the quality level of a process (before any rework is performed).

To identify any sudden changes to quality levels, positive or negative.

» When assessing the effects of upstream process improvements.
How:

» Decide upon an appropriate definition of a unit. As a rule, the average number
of defects per unit (or grouping) should be at least five.

* Identify the number of units in the subgroup. (Fractional unit sizes are
permitted.)

» Count the total number of defects in all the units in the subgroup.
» Calculate the average number of defects per unit found and plot that value.

 Calculate the centerline and the control limits after a sufficient number of plot
points are obtained (after 20 plot points is recommended).

g
-

-
© o

UCL

Average
Number of
Defects
per Unit

cl

a o N

I

LCL

Subgroup Number

Figure 1.12.13.1 u Chart




Conditions:

» Constant unit size, but any convenient number of units can be sampled per
subgroup (i.e., per plot point).

» Several different types of defects per unit are permissible.

* In order for this type of analysis to be of help, there should be some defects in
each observed unit. In fact, it would be best if the expected number of defects
per unit be five or more.

To Calculate Plot Points:

The u chart plot point is the number of defects found on the n units in the
subgroup divided by the number of equivalent units in the subgroup (n). The
centerline is the total number of defects divided by the total number of units
inspected for all the plot points on the chart. The control limits will change with
the varying subgroup size.

: Subgroup

o Total number of Number of
UCL=0+ 3\1; U= defects ) degects .
i Total number ~_Insubgroup |
of units inspected I number Number
— = of units in of units
LCL=u-3 U o St Gt subgroup i can vary
n Ny + Ny +ot Ny
C.
Min = 0 where =—
k = number of subgroups n;

Figure 1.12.13.2 Formulas for the u Chart — Control limits
are calculated separately for each plot point since the subgroup size can vary.

Example:

Composite materials are generally made up of several layers of materials that
are bonded to form the desired characteristics. Prior to layup, each roll was
inspected for defects. Since different amounts of the material are used each
day, the number of rolls inspected also changes daily. The u chart is used to
monitor the average number of defects per roll each day. Defects checked were

* Resin content.
e Tackiness.

* Fiber-area weight.

« Transportation temperature.

(&)

Volatile content.

* Fiber orientation.
Figure 1.12.13.3 Roll of Composite Material

Drape (ease of malleability).
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The data in the figure below represents the number of defects found per unit on
two days of production. On day 1, there was an average of 2.3 defects per unit;
and on day 2, 2.9. Notice that the quantity of rolls used changed from day to
day.

Note: One unit = 100 rolls of composite material

Day 1 Day 2
Number of defects (c1) = 21.0 Number of defects (c5) = 19.0
Number of units (n4) = 9.0 Number of units (n,) = 6.5
Average number of Average number of
defects per unit defects per unit
_%1y = %2 =
(u1 n1) 2.3 (u2 nz) 2.9

L u chart plot points J

Figure 1.12.13.4 Average Number of Defects per Unit

Figure 1.12.13.5 is a completed u chart which was started using the data in
figure 1.12.13.4.

Note: An attribute chart should only be used when there is no way to obtain
variable data from the characteristic being monitored. One example is in
the situation where “black boxes” (e.g., computers) fail to perform all
functions correctly and no measurable key characteristic is available. In
this case it might be of value to monitor first-pass yield using a p chart. If
multiple inputs/outputs from the computer are checked per test, a ¢ or u
chart to monitor the number of incorrect outputs per unit (c) or average
number of incorrect outputs per unit (u) could be used.

Interpretation of Chart:

Plotted on this chart is the average number of defects per unit (100 rolls) of
composite material. Points higher on the chart represent a greater average
number of defects. The calculation formulas are in the upper left-hand corner.
The centerline, 3.7, means that there is a grand average of 3.7 defects per unit.
The distance between the control limits varies inversely with the square root of
the subgroup size. Because of the necessary calculations, this chart should be
used only if the subgroup size (n) varies.

The first half of the chart seems more stable than the latter half. Point 16
exceeded the upper control limit, and point 17 fell below the lower control limit.
Points 12, 19, and 20 are all close to falling outside the limits.

The defect log sheet below the control chart shows the types of defects found in
the rolls. The totals column serves as a Pareto analysis (see section 1.6). The
largest contributors to the defect count are incorrect resin content and
tackiness.




u Chart

Average ucL LCL ) |Average , An §ample Chart
varies varies [Sample Size el 6.1 fFrequency each roll ['ype u
Part # rolls of composite material
Chart #
Dept# 10
Machine#
Characteristic Average number of
defects per unit (100 rolls)
9
u Chart Formula
— Total number of defects
us= Total number of units inspected 8 Ii
Cy+ Co+...+Cy /
TNyt ng .. N ; ”
= [ 11
ucL= o +3| L I
- I ]
u 6
leL=a-3 | L
n; ]
o | /
* Control limits are calculated 5 | | Ji
separately for each plot point. ’I I| I/ | 'l
| | T 1 |
JIAY | | | |
: e e e i
=497 _37 ] - I I
- 133.8 -V / 8 / | | / 1 |
. ] I | | 1]
3 [ \ ] [ 11 ] 11
A [ A\ lf \ 1] | 1]
Ny \ \ —¢ HT L
Control Limit Calculation r \\ { \ \ / ll ,’ ll ,’
for Plot Point 1 2 \[/ | L
\[/ | 1l
3.6 — == (1N ] I
UCL=37+3 |°> =56 " EC | M —(f] -
i i i ——
1
LcL=37-3 |38 _18 = l
9 —= — = L=
T2 3 4 5 8 7 8 9 10 11 1213 14 15 16 17 18 19 20 21 22 oo o
Number of Defects (c) 21|19 |9 [33 |23 |13 |31 | 21| 7 |43 |25(7 [27|17 |35 |53 |1 [37[35]| 2 |23 |15 497
Number of units (n) 9 |6.4 (44 |83|66[3.0(83|6.0(30 |92 (74 |44|99|62(65|63|33(92|63(27[44|29( 133.8
Average Number of Defects (u) |23 |29 [20 [40 |35|43|37 |35 (23 [47 |34 |16 |27 | 27|54 |84 |03 |40 | 56|07 (52 | 5.2 78.4
UcL |56(58 (63|56 (58|6.9(56 59|68 (55|57 (63 (5.4 (59|58 (59 67|55 (59|71 (63 (69
LoL |18|14|09|16|1.4|03|16|13]03|17|1.5(0.9 (1.8 (13 [14[13[05 (1.7 [1.3 (0.1 [09 [03
Defect Log Sheet
Resin content |16(12(4 (2119 |9 |23|14| 5 [32 [15 1319 [27(40 30(26|2 |15|7 339
Fiber area weight 112 1111 211|112 (1(3]|3 1 3 23
Volatile content 113 1 2|1 101 1 1 13
Fiber orientation 1 112 1 112(83(2 2|3 101 25
Tackiness 412|341 (3(|5](3 6|6 8 (3 (371 3|4 76
Transportation temp. 1111 1 111 1 2 10
Drape 3 1 1 2 (1 2 1 1

Figure 1.12.13.5 u Chart
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Recommendations:

This process is not in statistical control; but more importantly, the grand average
of 3.7 defects per unit is not acceptable. Point 17 showed only one defect for
3.3 units. This plot point should be investigated to find the (favorable) special
cause and make the solution a permanent part of the process. An abnormal
number of defects occurred at point 16. This plot point should also be
investigated so the special cause may be eliminated from the process.

The majority of defects can be attributed to resin content. This area should be
the primary focus for improvement. A statistically designed experiment should
be run on the resin-formulation process to determine the key factors that control
resin content. Set up X and R charts to help control those key factors. This
would probably involve a joint effort with the resin supplier.

Additionally, the unit size should be increased because the expected defects
per unit is less than 5. Based upon the current data, increasing the unit size to,
say, 200 rolls might be advisable.

Note: There is no Cpk calculation for a u chart.




1.12.14 Interpretation of
Control Charts

Among the reasons for taking data and monitoring processes is to discover
whether the processes are changing, and why they are, and to make the necessary
process improvements to stabilize the processes and reduce their variability. Con-
trol charts must be interpreted and analyzed, along with the other tools available
(e.g., the Tier chart, Western Electric rules, Histogram, and so on). The analysis of
charts and other sources of information helps guide process-improvement actions.

This section describes various patterns in data that can be observed in control
charts. The examples of control chart patterns that follow in this section have
several potential root causes. Even though D1-9000 requires investigation and
corrective action for points lying outside the control limits, the patterns shown here
may also be indicative of special cause variation affecting the process even though
the plotted points fall within the control limits. Analyzing the pattern and discover-
ing the source of the pattern provides valuable information to increase process
understanding and reduce variation. Since there are no cookbook solutions,
process knowledge will always have to be applied to any task of analyzing control
chart patterns.

Typical Pattern for a Control Chart That Is in Control

Figure 1.12.14.1 For a chart that is in control, the data are in a random pattern normally
distributed around the centerline.

A process that is in statistical control should exhibit only random variation. This
means that if the data are normally distributed the majority of points in the control
chart should cluster close to the centerline, with a few points spread out toward the
control limits. Two thirds of the plot points should be within one standard deviation
of the centerline, and 95% within two standard deviations. Virtually all (99.73% to
be exact) of the data should be within three standard deviations from the centerline.

Also, each point should be independent of the previous point, and the points should
fluctuate in a random and unpredictable manner. The points should also be nor-
mally distributed around the centerline. Subgroup averages tend to be normally
distributed. This is an advantage of using X charts.

The chart above shows a typical pattern for a control chart. All points lie within the
control limits, although a few wander near the edges. No cycles, shifts, or other
nonrandom patterns are apparent. The process appears to be in statistical control.
When a process remains in statistical control, its average and variability can both
be predicted, that is, it is stable. If a process is in statistical control the expected
process average and expected capability (e.g., Cpk) remain constant.
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Western Electric Statistical Control Chart Patterns

[Rule 1: Point beyond

the control limit Rule 4: Eight or more points
on one side of centerline
| without crossing

Upper control limit

A
N

Rule 2: Two out of three
points in Zone A or beyond

o i Rule 3: Four out of five
ower control fimit Lpoints in zone B or beyond

* Rule 1 is used to conclude the process is out of control
« Other rules are useful warning of changes in the process

Figure 1.12.14.2 Western Electric Rules

The so-called Western Electric rules, presented in the Western Electric Statistical
Quality Control Handbook, provide guidelines for evaluating patterns of data that
fall within the control limits and might be indicating nonrandom patterns in the data.

These rules are often called warning rules since they can be used to warn of
something suspicious occurring in the process. D1-9000 does not require action in
these cases, but the rules can be used to help identify suspicious process behavior.
These rules should be used cautiously because they require a user who is well
versed in control-chart theory and principles. Note that the only rule requiring
action by D1-9000 is for data points beyond the control limits (Rule 1, shown in
figure 1.12.14.2).

To use the warning rules, the control chart region is divided into three equally
spaced zones, A, B, and C, on each side of the centerline. Each dividing line is
one standard deviation from the other. In other words, zone C encompasses the
centerline plus and minus one standard deviation; zone B, between one and two
standard deviations from the mean; and zone A, between two and three standard
deviations.

The warning rules suggested by Western Electric apply to points on one side of the
centerline:

» Two of three points are in zone A or beyond (Rule 2).

 Four of five points are in zone B or beyond (Rule 3).

» Eight or more points in a row are on one side of the centerline (Rule 4).
These rules are illustrated in the chart shown in figure 1.12.14.2.

The remainder of this section describes control chart patterns that might be seen in
practice. These patterns may occur in either X-bar charts or in R or S charts.
Typical causes for the pattern are mentioned for each type of chart.




Recurring Cycles

Figure 1.12.14.3 Recurring Cyclical Movement

A feature of a random pattern is that it does not repeat; therefore, cycles are an
indication of an assignable cause. Recurring cycles (systematic up-and-down
movements) may have very few points outside the control limits. A cyclic pattern
can appear on either the Range or the X charts. A complete understanding of the
process and the data collection methodology can help in the interpretation of this
type of pattern. The following are some probable causes.

X-bar Charts

» Cyclic changes in physical environment such as temperature
or humidity.

Regular rotation of machines or operator.

Gage differences.

Voltage fluctuations.

Operator overcontrol on a periodic basis.

Tool wear.

Setup differences between shifts or operators.

The way parts are subgrouped.
R or S Charts
» Scheduled maintenance.
 Rotation of fixtures or gages.
« Differences between shifts or operators.

* Inconsistent sampling techniques.
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Trends

Figure 1.12.14.4 Steady Upward or Downward Movement

A trend is a long series of points that tends to noticeably increase (or decrease)
over time. Trends usually show up as many points falling on one side of the
centerline, with a gradual drift to points that fall on the other side of the centerline
or head toward the control limit. Typical causes of trend patterns include the follow-

ing.

X-bar Charts

Tool wear/thread wear.

Aging.

Seasonal effects.

Operator fatigue.

Inadequate maintenance.

Gradual degradation or contamination.
Gradual introduction of new material.
Chemical depletion in a process.

Machine warmup or cooldown.

R or S Charts

Something loosening.

Gradual wear.

Dulling of tool.

Gradual change in operator technique or skill level.
Effect of process controls in other areas.
Inappropriate subgrouping or sampling frequency.
Progressive loosening of a fixture over time.
Change in incoming material quality.

A downward trend is good. Its sources should be investigated and made part
of the process.




Strays

Figure 1.12.14.5 Isolated Point Outside Control Limits

A stray results from a single measurement that is greatly different from the others,
usually an outlier. Occasionally, an apparent stray is the result of a plotting error,
perhaps arising from a misinterpretation of scale. Strays are among the easiest of
the patterns to recognize because they are so different from the other readings in
the process. Listed are typical causes that can create strays on control charts.

X-bar Charts
» Wrong setting corrected immediately.
» Error in measuring or plotting.

* Omitted or incomplete operation.

Data included using another scale.

e Qvercorrection.

Tool breakage.
» Overheated machine or part.
R or S Charts
« Damage in handling.
* Incomplete or omitted operation.
e Setup parts included in data.
* Mathematical error.

* Measurement error.
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Lumping — Insufficient Stratification

Figure 1.12.14.6 Plot Points Hug the Centerline, Control Limits Too Wide

This pattern is characterized by apparently small fluctuations about the centerline,
with a noticeable absence of points near the control limits. When the control limits
are correctly calculated, they provide an accurate indicator of the variability intrinsic
to the process; however, the plot points should be roughly normally distributed
between the control limits. When this is not the case, as in the figure above, it is
useful to look at possible causes. The following are some candidates.

X-bar Charts
* Failure to recalculate control limits after process improvement.

 Incorrect calculation of control limits.

Misplaced decimal point; incorrect data entered.

Inadequate gage resolution.

R is too large because it is measuring the variation between two or more
unknowingly different processes rather than the variation within a single
process. For example, subgroup measurements might be taken from three
supposedly identical machines, when in fact they are different. The solution is
to plot the data from each machine separately.

R or S Charts

* Failure to recalculate the control limits after process improvement.

» Control limits correctly established, but chart excludes extreme values.
(Range or S charts will show reduced variability, and the corresponding
histogram will have no “tails.”)

» Subgroup includes measurements from widely differing lots.

Lumping occurs when one or more processes or categories of data are combined.
For example, the same springs may be made by four machines, or on the same
machine by three operators, or from two batches of material, and then combined
into one lot. If there are differences in either the average output or variation of each
category (machine, operator, batch), the range values on the R chart include
between-category variation which can inflate the value of R which, in turn, causes
the X chart control limits to be too wide.




Stratification means dividing the population of measurements into categories
according to some set of criteria. It is often needed to separate the data into the
proper categories (e.g., machines, material types, shifts) in order to properly ana-
lyze the data. It is often required to control the processes individually. Stratification
is a powerful tool in identifying category differences and sources of variation.

Few Points Within the Control Limits

Figure 1.12.14.7 Control Limits Possibly Too Tight

This pattern, characterized by few points within the control limits, would lead to the
conclusion that the process is wildly unstable and out of control. While this may be
the case, there are other possible explanations for this type of pattern.

X-bar Charts

Over adjustment (chasing random variation).

Different raw materials.

Erratic automatic controls.

Control limits are calculated incorrectly.

Output from two or more processes (machine, spindles, and so on).

Improper subgrouping. For example, sometimes multiple measurements from
the same part, say at different locations, should not be combined into a
subgroup. The within-part variation is small compared to the between-part
variation (i.e., R would be artificially small). The samples in a subgroup
should be independent of each other.

Improper selection of the correct control chart to use for the application.

R or S Charts

Worn-out machine.
New operator.
Erratic holding fixture.

Differences in test equipment.
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Process Shift

Figure 1.12.14.8 Sudden Change in Average Value of Plot Points

A sudden shift in the process is indicated by a change in level in one direction. This
pattern on a control chart means that something has impacted the process to
change its center (observed on the X or IX chart) or its variability (observed on the
R or S chart). This impact may not result in immediate out-of-control points, but
certainly calls for investigation into potential causes. This will often be found or
verified through the use of the Western Electric rules. Some of the more likely
candidates follow.

X-bar Charts

» Change in raw material used, or differences in setup procedure.

New tooling or cutters.

Shift or operator changes.

» Changes in the measurement system (procedures, devices).

New machine or recently overhauled machine.

Failure to recalculate the control limits after a process change.
 After preventive maintenance.
» Change in programming on CNC machine.
» Change in procedures for machine processes.
R or S Charts
* New machine or recently overhauled machine.
 Shift or operator changes.
» Changes in maintenance (timing, method).
» Change in raw materials.

If the shift is in the desired direction (toward nominal or target for the X or IX chart,
downward for the R or S charts), the shift represents an improvement in quality. It
is important that the cause be identified, documented, and made a permanent part
of the process.
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Mixture Pattern

Figure 1.12.14.9 Pattern Resembles a “Sawtooth” Effect

In a mixture pattern, relatively few points occur near the centerline. Many points
are located near the control limits and fluctuate frequently from one limit to the
other over time. Lines connecting plot points appear to be unnaturally long, resem-
bling a coarse sawtooth image. A histogram with more than one mode (peak) is a
common feature associated with the mixture pattern. Some of the possible reasons
for this pattern follow.

X-bar Charts
* Output from two or more machines or spindles alternately sampled.
» Overcontrol: frequent adjustment of a machine or process.

» Data collection method (e.g., alternating subgroups are taken from different
processes).

 Data collection too far downstream (e.g., test) from actual process.
R or S Charts

» Output from two or more machines or spindles alternately sampled.

Different materials used subgroup to subgroup.

» Play in a fixture.

Instability in automatic controls.

» Machine in need of repair.
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Too Few Discrete Levels

Figure 1.12.14.10 Less Than Five Unique Values on the Tier, IX, or Range Chart

This pattern can be characterized by only a few values (say, less than five) of
plotted data appearing on a chart. It usually means that either the manufacturing
capability or the specification tolerance of the feature exceeds gage precision
needed for control-charting purposes. Control limits and capability indices based
on data with this effect are usually unreliable. In practical terms, the amount of
process variation is so small that the gage only “sees” a few discrete values. An
operator rounding or truncating measurement values can produce the same effect.
The best charts to check for this pattern are the Tier, IX or Range charts. The
pattern is often referred to as a “measurement system resolution” effect.

X-bar Charts
* Poor gage resolution.
* Measurement rounding by operator.
* Process capability high and gage precision inadequate.

» Charting a feature with a very close engineering tolerance and gage resolu-
tion is not adequate, and parts are accepted with functional gage or mating
part.

R or S Charts
» Poor gage resolution.
» Measurement rounding by operator.

* Process capability high and gage precision inadequate.




1.12.15 Improvement Actions
During Initial Data Collection

Suppliers should establish procedures to follow during the accumulation of data for
the purpose of calculating initial control limits. These procedures should specify
actions that enable process owners to detect significant process changes and to
help avoid causing unnecessary process changes. Procedures should, at a mini-
mum, address the following three areas:

1. Begin the data collection effort on the process.

» Ensure that the process is standardized and not operating in a highly unstruc-
tured fashion.

» Ensure that good procedures are in place, setup is proceduralized, measure-
ment equipment is calibrated, and so on.

» Perform a gage R&R if measurement system variation appears great.
* Monitor process with a Run chart, Tier chart, or Group chart.

» Monitor the key characteristics of the process with a Run or Tier chart that
displays individual measurements arranged in the order of part produc-
tion. Display a line on the chart indicating the engineering nominal or
target specification. Since individual measurements are displayed, specifi-
cation limits may be drawn on the chart.

» Analyze the time-ordered chart (e.g., Run, Tier, or Group charts) for the
appearance of excessive variation or nonrandom patterns (see section
1.12.14). Be especially alert for strays, cyclic, or other nonrandom pat-
terns. These may indicate variation due to measurement errors, plotting
errors, setup parts, process intervention, and so on. Initiate investigative
actions whenever a nonrandom pattern is suspected, and initiate actions
to reverify the results while the parts are still available at the process.

» Eliminate and record any assigned causes of the suspected nonrandom
patterns.

» Record other process changes (such as tool changes or operator
changes) as they occur.

* When subgroups of size 2 or larger are collected, a Tier chart can be
used to display individual measurements, but in groups as they are col-
lected. Since individual measurements are displayed, the target and
specification values can be placed on the chart. Follow the same ap-
proach discussed above for the Run chart.

* When multiple measurements (multiple locations of the same feature) are
taken on a part, the Group, Tier and Location charts can be used to
display individual measurements. Follow the same approach discussed
above for the Run chart, and use standard data analysis methods.

2. Monitor compliance to specifications.

» Check individual measurements against specifications. Assess the need to
make an adjustment to the process, or whether the variation is too great to
allow the process to continue.

» Occasionally compare the spread in process output to the engineering speci-
fications to acquire a sense for the process capability.

3. Process adjustments.

* In the first stages of data collection we often know little about process
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variation (unless the same process is used in a very similar fashion for similar
parts); however, we do know the engineering specifications that need to be
met. As a result, in the beginning we are usually trying to ensure that parts
meet specification. Process adjustments, process improvements, or further
process investigation (e.g., gage R&R, DOE) are made to accomplish this.

» As data is collected during this “setup” or early phase, we are really investi-
gating process capability, but not in formal SPC fashion. As soon as we feel
we are making parts in specification and no significant process changes are
being made, we can begin observing and analyzing the data for process
variation and control.

» As much as possible, avoid making adjustments to the process during the
initial collection of measurements. Frequent adjustments tend to distort data
and can lead to unreliable estimates of the natural average and variability of
the process.

* If adjustments are necessary, employ a repeatable methodology. If any
significant adjustment is made, then the data collection period to establish
control limits should be restarted.

* As much as possible, use the average of several measurements to determine
what amount of adjustment is required. Measurement of a single part does
not usually provide a good estimate of the process average. A sequence of
adjustments based on single parts could easily add more variation to a
process.

4. Establish control limits, calculate Cpk, and reduce variation.

* After obtaining roughly 20 plot points, calculate the control limits for the
variability control chart first (e.g., MR, R, or S chart). This chart must be in
control before we can rely on the average estimate of process variation (e.g.,
MR, R, S), since this value is used in the calculation of the control limits for
the control chart for averages. If points are out of control, investigate the
reasons (this may not always be possible since since some of the measure-
ments may not be recent) and take corrective action to remove the special
causes. Collect additional plot points and calculate the control limits. Repeat
this until the process is in control.

* Now construct control limits on the control chart for the x-bar chart (or IX
chart if subgroups are of size 1). Repeat the process as described in the
above paragraph.

* Once both Range and Averages charts are in control and stable, extend the
control limits into the future and use accordingly.

* Recalculate the control limits when the process has significantly changed.

* After the process is in statistical control, calculate Cpk. The Cpk calculation
must include the data used in the calculation in the control limits. If Cpk is less
than 1.33, investigate sources of variation and reduce them. Then begin the
process again: collect 20 new subgroups, recalculate the control limits, and so
on. If Cpk is greater than 1.33, continually look for improvement opportuni-
ties.

This straightforward process will lead to stable and predictable processes, on-target
processes with reduced variation, less scrap and rework, less waste, lower costs,
higher quality products, and higher customer satisfaction.




1.12.16 Test for Similar Variability

Situation:

* Section 2.4 of D1-9000 describes a process orientation for statistical control
and capability rather than an individual part-by-part orientation. Process
orientation involves combining different parts on a single control chart, usually
the Target chart. By so doing, the process and all the parts that cross it can
be monitored.

» However, it is very important that the output being combined onto one control
chart is truly from the same process because control charts are designed to
monitor only one process. For example, parts produced by the same machine
or series of machines, but of different materials, different sizes, different
tooling, and so on, may or may not be considered as being from the same
process.

» As aresult, a test must be conducted to ensure that the process is the same
for all parts in the chart. One requirement for placing different parts on a
single control chart, as described in D1-9000, section 2.4, is that the process
have the same variability from part to part.

« Stratification of parts into categories may be needed.

* In the barstock example in Section 1.12.7 (Target charts), various lengths of
barstock were placed on the same Target chart. However, it is possible that
the longer barstock may experience more variability. This could be caused by
a different setup, a different method of holding the part while cutting, or less
accurate measurement for the longer parts. In this case, the greater variabil-
ity of the longer barstock could cause unreliable control limits on the target
chart. As a result, the longer barstock should be placed on its own control
chart.

What:

» The Kruskal-Wallis (KW) test is one method for checking if parts should be
combined on the same control chart. The KW test is a statistical test for
evaluating the differences in process variability from part to part. Other meth-
ods exist, and if they are statistically sound, they may be substituted for the
Kruskal-Wallis test.

Why:

» To help ensure that the different parts being combined onto one control chart
meet the condition of having similar variability.
 To aid in the stratification of parts into valid part groupings.

 To evaluate the validity of placing parts together into a part grouping.
When:

» Combining different parts with a common key characteristic into a part group-
ing, as described in D1-9000, section 2.4.1.

» A Target chart is used to monitor different parts.

* Periodically retesting to ensure new and existing parts have similar variability.
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How:

e Compare the part-to-part variability in the R, S, or MR chart.
* Compute the KW statistic.
» Evaluate the KW value.

» The KW statistic will get larger as the variability of one or more parts
becomes different from the “average” part variability.

» The Kruskal-Wallis test statistic must be interpreted through a probability
value, p, because the actual test statistic will depend on the sample size.
The number p is a value between 0 and 1. A large p value (see fig.
1.12.16.2) would mean that it is likely that all parts come from the same
process and can be combined on the same chart. A small p value (see
fig. 1.12.16.3) would indicate that the parts probably do not all come from
the same process, and therefore, one or more of the parts should not be
included on the chart. Figure 1.12.16.1 below can be used to guide the
use of p values.

» Because of the potentially significant computation needed, computer
software is usually needed.

value

Continue to use existing
target chart

p>0.10 Parts are similar.

Collect more data and test

0.05<p<0.10 May have part differences. again

Examine the variability chart and
remove one or more parts
from the chart. Test again.

p <0.05 At least one part is different

Figure 1.12.16.1. Using p Values for KW Test

* When the p value is less than 0.05, it is usually easy to confirm which part(s)
is causing the low value. An examination of the R or S chart will usually show
that one (or more) parts have different average ranges from the rest.

» The next step is to analyze the distinguishable part(s) and try to understand
why there is a difference. Often two processes (or more) are at work, and so
more than one target chart may be needed (for example, one for dense circuit
cards and one for less dense circuit cards). When distinguishable parts are
identified, they should be removed from the chart, and the Kruskal-Walllis test
should be run again to verify that parts have been correctly classified and
combined on the proper control chart.

Note: Even if p is larger than 0.10, the R or S chart should be examined for
obvious signs of one part number having a range that is dissimilar to
those of other parts.




Target R Chart
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Figure 1.12.16.2 Example Target R Chart—Large KW p Value
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Figure 1.12.16.3 Example Target R Chart—Small KW p Value
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1.13 Histogram

What:

» A bar chart that displays the distribution of individual measurements taken on
a part or process. Also called a frequency distribution because the frequency
of occurrence of any given value is represented by the height of the bar.

Why:

» Allows a person to quickly visualize the center, variation (spread), and shape
of the distribution of measurements.

» To observe patterns in the measurements.
» Provides clues to reducing variation and causes of problems.
» To observe the production consistency of a quality characteristic.

To graphically show the relationship between the capability of the process and
the engineering specifications.

 To visually assess whether a set of measurements is normally distributed.

When:

» Collecting measurements on a key characteristic or any process output.
» Capability studies are being performed.
» Analyzing the quality of incoming material and outgoing product.

* Analyzing the variation at each step in a series of steps where tolerance
(variation) buildup is of concern.

How:

 Collect measurements (variable data) from a process or key characteristic.
Thirty or more measurements are preferred.

» Construct a check sheet to record the data. (See sec. 1.5.1.)

» Determine the range of the data by subtracting the smallest measurement
from the largest.

» Using figure 1.13.2 as a guide, select the proper number of class intervals
into which the measurements should be grouped.

Histogram — Distribution
40
Lower Upper
%0 spec L~ spec
limit limit
E \
requency 20 4 \

10 74 \

Classes

Figure 1.13.1 Histogram
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» Determine the width and limits of the class intervals. Class width is calculated
by dividing the range by the number of classes. Set the class limits so that no
data values fall on any one of the limits. This is done by adding the next
logical decimal value to each limit. For instance, if you create intervals for data
with limits of 0.5 to0 5.5, 5.5 to 10.5, and so on, a value of 5.5 could go in
either the first or second class. You can avoid this problem by setting the
intervals at 0.51 to 5.50, 5.51 to 10.50, and so on, so that no data value falls
on a class limit.

» Construct a frequency table like the one in figure 1.13.3. Tally the number of
observations found in each class.

» Draw and label the histogram.

The histogram for the data in figure 1.13.3 is shown in figure 1.13.1. The specifica-
tion limits and associated normal distribution were added.

Observations Number of class intervals

25to0 50 5t08
51 to 100 6to 11
101 to 250 9to 13
251 and over 111015

Figure 1.13.2 Guide for Establishing the Number of Class Intervals

Tall Number of observed
y measurements

1 0.51to 5.50 T
2 5.51 to 10.50 TH T T T 20
3 10.51 to 15.50 T P R T T 25
4 15.51 t0 20.50 TP T 20
5 20.51 to 25.50 T T T 15
6 25.51 to 30.50 TN 10
Figure 1.13.3 Example of a Frequency Table
Strengths:
 Visual.

» Simple and powerful.
* Quickly summarizes large amounts of data.

* May be used to show relationship of key characteristic variation to engineer-
ing specifications.

Weaknesses:

» Will not quantitatively assess process stability.

* Not time sensitive.

» Generally takes large amounts of data before patterns can be seen.
» Tempting to over interpret.

» Shape can be somewhat subjective.




Patterns:

The histogram in figure 1.13.1 resembles a normal distribution, but sometimes the
histogram from a process does not follow a normal curve. Studying histogram
patterns provides clues to causes of problems. Some common patterns, with their
probable causes, are listed below (formal evaluation as to whether the data are
from a normal distribution can be accomplished with various statistical tests).

Skewed to the left: ~
Could be caused by locating Z
the process toward the high

end of the tolerance band and
sorting the parts that fall out
on the high side; or the nature
of the process physically
prohibits any measurements
greater than a maximum value.

Figure 1.13.4

Skewed to the right:

Could be caused by locating
the process toward the low
end of the tolerance band and
sorting the parts that fall out
on the low side; or the nature
of the process physically
prohibits any measurements
below a minimum value.

Figure 1.13.5

Bimodal:
Two combined processes.
Reasons: May include two
shifts, operators, inspectors,
suppliers, machine settings,
gages, tools, machines, or
measurement locations.

)|

Figure 1.13.6
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Truncated:

This distribution is not normal
because there are no gradually
tapering outer tails. This can
happen when a process is not
capable of meeting the
specifications and the parts
are sorted from both ends, or
too few classes are chosen.

Missing center:

The center of the distribution
has been sorted from the rest.
This portion may have been
delivered to a customer with
tighter specification
requirements.

Spikes at the tails:

The parts in the outer ends of
the distribution are being
reworked to bring the
characteristic just within
specifications, or
measurements of out-of-
specification parts are being
recorded as in specification.

Spikes at the tails:

The parts in the outer ends of
the distribution are being
reworked to bring the
characteristic just within
specifications, or
measurements of out-of-
specification parts are being
recorded as in specification.

Figure 1.13.7

Figure 1.13.8

Figure 1.13.9

Figure 1.13.10




1.14 Process Capability Analysis
(Cp and Cpk)

What:

» A process capability analysis involves measuring the natural variation in a
process. Process capability is a function of the variation in a process and is
defined as the six standard deviation (6s) spread in the process. Two indexes
commonly used to compare process variation and engineering requirements
are Cp and Cpk.

Why:

» To assess whether a key characteristic or process is able to meet require-

ments.

» To monitor the continuous reduction in variation.

» To monitor the continuous improvement in a process.

» To measure the uniformity of the output of a process.
To identify processes or quality characteristics that need improvement.
» To ensure that key customer requirements are met or exceeded.
To select between alternative machines or processes to produce a product.
To aid in determining subgroup sampling frequency for control charts.
 To provide information to Engineering for design and tolerancing.

To determine whether defect reduction can be best achieved by centering the
process or by reducing process variation.

When:

» Measuring a process or characteristic where variable data is collected and
engineering specifications exist.

» Control limits are calculated or recalculated, or when additional data is avail-
able to improve the confidence of the Cpk estimate.

 Establishing a rough measure of the “as-is” process prior to improvement.
 Establishing engineering tolerances (tolerance analysis).

Parts per million
defective

0.50 133,614
0.75 24,449
1.00 2,700
1.10 967
1.20 318
1.30 96
1.40 27
1.50 7
1.60 2
1.70 0.34
1.80 0.067
1.90 0.012
2.00 0.0018

Figure 1.14.1 Fallout When Process Is Centered Between Engineering Specifications and
Is Normally Distributed
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Conditions:

» The process must be in statistical control before we can rely on Cp and Cpk.
The natural variation in a process that is used in calculating Cp and Cpk
should measure the common cause variation in the process.

» To estimate the standard fallout rates as shown in figure 1.14.1, the individual
measurements should be normally distributed.

« If nominal is in the middle of the specification limits and the data are
nonnormally distributed, then sometimes applying a mathematical trans-
formation (e.g., a log or reciprical transformation) to the measurements
can change them so that the new transformed set of data is normally
distributed.

Higher Cp and Cpk values yield lower fallout rates and, as a result, are preferable.
The table in figure 1.14.1 illustrates this point. Because this table is for illustration,
it is assumed that the process is centered and, as a result, Cp = Cpk.

How:

 Calculating Cp and Cpk indices requires knowledge of the engineering speci-
fications, the process average, and the variation of the process or characteris-
tic being evaluated. Two capability indices recognized by Boeing are Cp and
Cpk. The fundamental notion is that the spread in the specifications is com-
pared with the spread in the natural variation in the process (with modification
when the process is not centered).

Cp= Engineering tolerance Cpk = Smaller of [

60

USL-Avg Avg-LSL
30 3o

Figure 1.14.2

Where,

o = standard deviation (sigma)

USL = upper spec limit

LSL = lower spec limit

Engineering tolerance = USL — LSL

Avg = average of the individual measurements

Calculating the standard deviation:  The standard deviation (o) is a number that
is a mathematical summary of the true variation about a characteristic or process
average. Below is the formula for s, which is used for estimating o.

Y (Xj - Avg)?
n-1

Figure 1.14.3




Where,

S = estimate of the true population standard deviation s
(it is the sample standard deviation)
Avg = average of all measurements

>  =summation of

X, =individual measurements

n = total number of measurements

= =is estimated by

o = true population standard deviation (sigma)

Example:

Measurements from a key characteristic yield the following 20 values:

62 62 60 59

61 64 57 62 n=20

64 59 60 61

60 63 59 58 Avg = 60.15
60 56 60 56

(62 - 60.15)2 + (61 - 60.15)2 + (64 - 60.15)2 + ¢ ® ® + (58 - 60.15) 2+ (56 - 60.15) 2

N 20-1

| 3.4225+0.7225 + 14.8225 + « o » 1 4.6225 + 17.2225
N 19

_ | 10255
~ 19

= 23232

Figure 1.14.4

Calculating Cp and Cpk:

Engineering tolerance

Cp = 60

Figure 1.14.5

Given: Engineering specifications = 60 £ 5; USL = 65, LSL =55

0 = s=2.3232. Since Cp depends on the unknown value of g, we will use an
estimate of o (which is s) to estimate Cp.

Step 1: Calculate the engineering tolerance.
Engineering tolerance is 65 - 55 = 10
Step 2: Estimate capability.
Process capability = 606 = 6s = 6 x 2.3232 = 13.9392
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Step 3: Estimate Cp.

10
N~ = 072
Cp ~ S35sm
Figure 1.14.6
Step 4: Estimate Cpk.
_ USL-Avg Avg-LSL
Cpk = Smaller of[ o o ]
Figure 1.14.7
Given: Engineering specifications = 60 = 5; USL = 65, LSL = 55.
Avg = 60.15
0= s=23232
+— Smaller of the two
CoyUSL-Avg _ 65-6015 485
PU="35 ™ 3x2323%2 ~ 6.96% 0.70
Coj- Ava-LSL _ 6015-55 515  _ 074
P= 730 Y 3x2332 ~ 6% |
Cpk ~ 0.70
Figure 1.14.8

Calculating Cpk for Specific Cases:

Case 1: Upper and lower specifications are provided and engineering nominal (or
target) is centered between the specification limits.

LSL USL

| g |

Avg

Cpk = Smaller of [USL “Avg | Avg - LSL]
30 30

Figure 1.14.9

192




Case 2: A lower physical bound is used as the lower specification limit, or no lower
specification exists. It is assumed that smaller feature measurements are

always superior to larger values.

USL - Avg
e 250 A

Avg

Figure 1.14.10
Case 3: An upper physical bound is used as the upper specification limit, or no

upper specification exists. It is assumed that larger feature measurements
are always superior to smaller values.

LSL

Avg - LSL
e - B2 I~

Avg

Figure 1.14.11

Case 4: Upper, lower, and engineering nominal (or target) specifications are given,
but nominal is closer to the lower specification than the upper
specification.

Cpk is maximized when the process average equals the nominal
specification. Cpk is positive when the process average lies between the
upper and lower specification limits, and is 0.0 when the process average
equals either LSL or USL. When nominal is not centered between the
upper and lower specification limit, a higher Cp is required to meet a Cpk
of 1.33 than if the nominal had been centered.

LSL USL

Nominal
Avg-LSL (USL—Avg )( Nom-LSL )
3c '\ 3o USL-Nom

Cpk = Smaller of [

Avg

Figure 1.14.12
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Case 5: Upper, lower, and engineering nominal (or target) specifications are given,
but nominal is closer to the upper specification than the lower
specification.

Cpk is maximized when the process average equals the nominal
specification. Cpk is positive when the process average lies between the
upper and lower specification limits, and is 0.0 when the process average
equals either LSL or USL. When nominal is not centered between the
upper and lower specification limit, a higher Cp is required to meet a Cpk
of 1.33 than if the nominal had been centered.

LSL
Avg—LSL)(USL-Nom) USL—Avg] |

Nominal UiL

Cpk = Smaller of [( % Nom-LSL 35

Avg

Figure 1.14.13

Case 6: Upper, lower, and engineering nominal (or target) specifications are given,
but the nominal is equal to the lower specification limit and there are no
physical bounds limiting measurements from going below nominal.

LSL = Nominal USL
Avg-LSL
= -——
oPk 30 |A |
Avg

Figure 1.14.14

For this case and the following case only, a large Cpk is not
desirable. The optimal Cpk is 1.33, and Cp should be maximized
instead of Cpk.

Case 7: Upper, lower, and engineering nominal (or target) specifications are given,
but the nominal is equal to the upper specification limit and there are no
physical bounds limiting measurements from going above nominal.

LSL USL = Nominal
USL - Avg
= —- —
ok 30 | Al
Avg

Figure 1.14.15

For this case and the preceding case only, a large Cpk is not
desirable. The optimal Cpk is 1.33, and Cp should be maximized
instead of Cpk.




If none of the seven cases apply for a specific key characteristic for a Boeing
application, contact Boeing.

When no nominal is given, a manufacturing target should be established — gener-
ally halfway between the upper and lower specifications. In such instances, use
case 1, 4, 5, 6, or 7, as appropriate.

Using Process Capability Analysis to Your
Manufacturing Advantage

Cases 4, 5, 6, and 7 are encountered in manufacturing on a daily basis. Engineers
give design guidance to manufacturers when nominal is intended to be off-centered
and is so desired to achieve optimum product performance in the marketplace.
Likewise, operators machining features to maximum material condition (MMC) may
help to minimize scrap and add serviceable life to many high-cost parts. Therefore,
it becomes advantageous for manufacturing to know and understand where to
center a process on what optimum target value, and when to aggressively strive for
improving Cp while holding Cpk to a relatively lower, constant index. The value of a
capable measurement system cannot be overstated, especially for these cases.
Gage variation studies (see Section 1.15) should be performed to add confidence
in accepting and rejecting process output targets close to specification limits.

There are, of course, cost considerations and tradeoffs, but setting the proper
capability goals can help the producer (as well as the customer) achieve superior
guality and performance.

Data and information feedback to Engineering and manufacturing will enhance
current and future products. Along with other information, the use of statistical
control charts and capability data are vital pieces of the communication process.

Note: Capability index information must be recorded. This would at least
include Cpk values for key characteristics. This information may be
recorded on the AQS Control Plan.
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Alternative to Cpk Requirement of 1.33

Section 2.3.2 of D1-9000 requires that an estimated Cpk of 1.33 or better be
achieved to demonstrate the capability of a process. As an alternative, a key
characteristic will be considered capable if the supplier can demonstrate with 90%
confidence that the true Cpk exceeds 1.0. Using this alternative when estimating
Cpk, the number of measurements collected can be taken into account. Table
1.14.1 can be used to determine the minimum estimated Cpk to demonstrate
capability.

Entries are estimated Cpk values that ensure a 90% probability

Number of that the true Cpk equals or exceeds:

measurements

taken 110 | 1.20 { 1.33 | 1.40 | 1.50 | 1.60 | 1.70 | 1.80 | 1.90 | 2.00
250 107 | 117 128 142 149 160 170 181 191 202 213
200 1.08 | 1.18 129 143 150 161 172 182 193 2.04 214
150 1.09 | 120 130 1.44 152 163 1.74 184 195 206 217
125 1.10 | 1.21 132 145 153 164 175 186 197 208 2.18
100 1.11 122 133 147 155 166 177 188 199 210 2.21

90 112 | 1283 134 148 156 167 178 189 200 211 222
80 113 | 124 135 149 157 168 179 190 202 213 224
70 114 | 125 136 150 158 170 181 192 203 214 226
60 115 | 126 138 152 160 171 183 194 206 217 228
50 117 | 128 140 154 163 174 185 197 208 220 2.31
46 118 | 129 141 155 164 175 187 198 210 221 233
42 119 | 130 142 156 165 177 188 200 212 223 235
38 1.20 | 1.31 143 158 167 178 190 202 214 225 237
34 1.21 133 145 160 168 180 192 204 216 228 240
30 123 | 1.35 147 162 171 183 195 207 219 231 243
28 124 | 136 148 163 1.72 184 197 209 221 233 245
26 125 | 1.37 149 165 174 186 198 211 223 235 247
24 126 | 139 151 166 1.76 188 200 213 225 238 2.0
22 128 | 140 153 168 1.78 190 203 215 228 240 2.53
20 130 | 142 155 171 180 193 206 218 231 244 257

Table 1.14.1 Alternative to Cpk Requirement of 1.33

The entries in the above table are the estimated (calculated) Cpk values required to
be 90% confident that the true Cpk is greater than or equal to the Cpk value at the
top of the respective column. The values listed in the column titled “Number of
measurements taken” are the actual number of measurements, not the number of
plot points on the control chart. The table assumes that the underlying distribution
of the individual measurements is a normal distribution, with a fixed mean and
standard deviation.

Figures 1.14.16 and 1.14.17 graphically show the calculated Cpk values needed to
ensure a 90% probability that the true Cpk value is 1.00 and 1.33, respectively.
They are simply graphical representations of columns one and four in table 1.14.1.




Examples:

Table 1.14.1 can be used in two different ways, as illustrated in these two ex-
amples:

« If 30 parts are measured and the target Cpk is 1.0, the calculated Cpk from

the 30 parts needs to be at least 1.23 in order to satisfy the AQS requirement.

* If 20 parts are measured and the calculated Cpk is 1.71, we have 90% confi-

dence that the true Cpk is 1.33 or better.

1.4 —
Computed Cpk values to ensure 90%
13 confidence of a true Cpk > 1.0
Cpk 12
1.1 —
10 1 1 1 1 1 1 1 1 1 J
0 25 50 75 100 125 150 175 200 225 250
Number of Measurements Taken
Figure 1.14.16
18 —
1.7 |—
Computed Cpk values to ensure 90%
16 |- confidence of a true Cpk > 1.33
Cpk 15
14
1.3 1 1 1 1 1 1 1 1 1 )
0 25 50 75 100 125 150 175 200 225 250

Number of Measurements Taken

Figure 1.14.17
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1.15 Gage Variation Study

What:

» A study to determine the amount of variation introduced into product mea-
surements by the measurement process itself. This analysis is used to calcu-
late the percent of engineering specification consumed by measurement
variability.

Understanding and determining this source of variation is important since
measurement is one of the major elements that contribute to variation in a
process.

Unlike calibration and certification activities which determine gage accuracy, a
gage variation study addresses gage reproducibility and repeatability. (It is
sometimes called a Gage R&R.)

* Reproducibility refers to the variation due to different operators taking mea-
surements (i.e., the ability of different operators to produce the same mea-
surement results on the same part using the same gage).

* Repeatability refers to the variation due to the gage itself (i.e., an operator’s
ability to repeat measurements on the same part using the same gage).

* Measurement variation (gage capability) refers to the combination of repro-
ducibility and repeatability.

It is often assumed that measurements are exact. However, every facet of the
measurement process (gages, operators, methods) is subject to variation. In
some cases, there is more variation in the measurement process than in the
parts being measured.

* Total variation = measurement variation + product variation.
* Measurement variation = variation due to reproducibility + variation due to
repeatability.

Measurement variation is often compared with total variation, as well as with
engineering tolerance.

Why:
» To evaluate the amount of variation due to the measurement process, includ-
ing the gage and those using the gage.
» To compare the amount of measurement variation with engineering tolerance.
» To compare the amount of measurement variation between different gages.
To facilitate gage purchasing and gage planning decisions.

To identify whether measurement variation is a significant problem so action
can be taken.

So total variation can be reduced, and Cpk improved, by improving the mea-
surement process. Then attention can be given to more effectively reducing
product and process variation.

When:

» A key characteristic or process is not capable.

» A key characteristic is out of control and no special cause of variation can be
assigned.

» The suitability of a gage for use in control charting a process must be deter-
mined.




» The measurement process is suspected of being a significant source of
variation.

» Preparations are being made to conduct a designed experiment.
» Changes to the measurement process must be evaluated.
» Hardware acceptance decisions are subject to measurement error.

Discussion:

Seven basic types of measurement variation are described below. The gage
variation study described in this section only addresses reproducibility,
repeatability, and gage capability.

» Bias — The difference between the average of a set of repeated measure-
ments with a single device, and the accepted true value of what is being
measured (fig. 1.15.1).

* Repeatability — A value describing the ability of measurement equipment to
duplicate measurements when all other variables in the measurement pro-
cess are held constant (fig. 1.15.1). The repeatability is defined as + 3s from
the gage average.

True Value

Bias

3
+30 y Gage Average
Repeatability /

Figure 1.15.1 lllustration of Bias and Repeatability in a Measurement Process

* Reproducibility — A value describing the component of variation due to
measurements made by different appraisers, using the same gage (measure-
ment process) on the same parts (fig. 1.15.2).

Wﬁments by Operator A

b
Reproducibility

Y
Measurements by Operator B /

Figure 1.15.2 lllustration of Reproducibility in a Measurement Process
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» Gage capability — The combined variation of reproducibility and repeatabil-
ity (fig. 1.15.3). This is an estimate of the total variation present in the mea-

surement process.

Reproducibility Repeatability Gage Capability

I
—

14

Figure 1.15.3 lllustration of Gage Capability in a Measurement Process

» Accuracy — The degree of agreement of measurements with the accepted
true value of what is being measured. This is typically determined by calibra-
tion and certification in a laboratory environment.

» Resolution — The ability of a measurement device to differentiate between
values of a measurable characteristic (fig. 1.15.4).

Good (fine) resolution means that small part-to-part differences (variation) can
be measured. Poor (coarse) resolution means part-to-part differences are
recorded as having the same value. Poor resolution results in poor informa-
tion and can have a significant negative impact on the proper use of control
charts and Cpk.

Coarse resolution Fine resolution

Frequency

—

Measurement values Measurement values

Figure 1.15.4 lllustration of Different Levels of Resolution (Same Horizontal Scale)

 Stability — The difference in the average of at least two sets of measure-
ments obtained with a gage, over time (fig. 1.15.5).




Time 1

/ ! I
Stability

Time 2

True Average

Figure 1.15.5 lllustration of Stability in a Measurement Process

How:

Step 1: Choose parts to be tested

Set aside five to ten parts and select a single characteristic on each part. Obtain
the engineering specifications and tolerances for the selected characteristic.

Step 2: Select gage

Choose a gage to measure the part characteristic. It should be the gage used
during production on the factory floor.

Step 3: Select people to take the measurements

In order to determine the measurement reproducibility, at least two people must be
included in the study, preferably those who typically do the measuring.

Step 4: Obtain measurements

The same characteristic from each part is measured five to ten times by each
person with one measurement gage. The parts must be measured in random
order. People involved in taking the measurements must not be aware of which
parts are being measured. Each measurement must appear to be a separate
measurement of a unique part. In other words, if three operators are used to mea-
sure six parts five times, each operator should think they are measuring thirty
different parts, to prevent a biased response.

As a minimum, the gage must be zeroed between measurements. An example of a
data collection sheet is shown in figure 1.15.6. In this example, three operators
each collected five measurements for five different parts.
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Operator Measurement Specifications

2 ] 4 LSL |Nominal| USL

A 1 5.101 5.100 5.104 5.099 5.097 | 5.050 5.100 | 5.150
A 2 5.101 5.099 5.101 5.100 5.098
A 3 5.102 5.097 5.100 5.101 5.101
B 1 9.599 0.598 9.602 9.601 9.598 | 9.580 9.600 | 9.620
B 2 9.598 9.598 9.601 9.598 9.600
B 3 9.602 9.600 9.600 9.600 9.602
C 1 6.901 6.899 6.900 6.897 6.899 | 6.850 6.900 | 6.950
C 2 6.899 6.897 6.896 6.904 6.898
C 3 6.897 6.896 6.901 6.901 6.899
D 1 7.700 7.696 7.697 7.697 7.696 | 7.650 7.700 | 7.750
D 2 7.701 7.701 7.696 7.702 7.703
D 3 7.698 7.701 7.700 7.700 7.700
E 1 8.300 8.298 8.297 8.296 8.301 | 8.250 8.300 | 8.350
E 2 8.302 8.298 8.302 8.298 8.297
E 3 8.300 8.303 8.302 8.299 8.298

Figure 1.15.6 Example of a Data Collection Sheet

Step 5: Determine reproducibility, repeatability, and gage capability

Reproducibility, repeatability, and gage capability may be obtained by following 1ISO
standard 5725 procedures.

Step 6: Determine percentage of tolerance consumed (PTC)

The percentage of engineering tolerance consumed by measurement variation can
be calculated by dividing the gage capability by the tolerance band, and then
multiplying by 100. See figure 1.15.7. It is recommended that the gages use no
more than 10% of the engineering tolerance.

Measurement variation that consumes values approaching 30% of the engineering
tolerance should be considered only marginally acceptable. Above 30% PTC,
however, the measurement process should be considered unacceptable for evi-
dence of process control and capability.

The following technique can be used to mitigate the effects of high measurement

variation: For a PTC between 30% and 42%, use the average of two independent
measurements of the same characteristic on the same item as the reported mea-
surement.




LSL

Engineering tolerance

USL

Percentage of tolerance consumed =

Gage
capability

gage capability
USL - LSL

x 100

Figure 1.15.7 Calculating Percent Tolerance Consumed (PTC)

This average will have less variation associated with it than will an individual mea-
surement. If PTC is as high as 52%, use the average of three independent mea-
surements. Above 52%, it is usually prudent to improve the measurement process
rather than averaging more measurements.

The use of the average of a set of measurements is for product improvement

purposes only. Conformity is still based on individual measurements.

See D1-9000, section 1.10 for inspection requirements.

Step 7: Record the gage variation information on the AQS Control Plan.

Example:

For illustration purposes, the following example using the data in figure 1.15.6
involves five parts, three operators, and five measurements per operator. The lower

specifications and the upper specifications are shown in figure 1.15.6.

The data in figure 1.15.6 produced the results in figure 1.15.8.

mooOm@>

- o Total Gage
Repeatability Reproducibility Capability
% % %
6s tolerance 6s tolerance 6s tolerance
0.012 12.0 0.000 0.0 0.012 12.0
0.009 22.0 0.004 9.6 0.010 24.1
0.014 14.3 0.000 0.0 0.014 14.3
0.012 11.6 0.009 9.3 0.015 14.9
0.013 13.1 0.001 1.2 0.013 13.2

Figure 1.15.8 Gage R&R Results for Data in Figure 1.15.6
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This example shows that parts A, C, D, and E are close to the desired goal of 10%
tolerance consumed (PTC). Part B would be a candidate for improvement since the
PTC is 24%. Both the repeatability and operator variation could be improved. To
improve the PTC for part D, operator variability is a candidate for improvement.

Interpretation of Results:

* If reproducibility is large in comparison to repeatability, it may indicate that—
« Different operators are using different measurement methods.
» Scale markings on the gage are not legible to the degree required.
 Training on proper use of the gage may be required.

* If repeatability is large in comparison to reproducibility, it may indicate that—
» Gage maintenance (refurbishment) is necessary.
» The gage is inconsistent or degrades with use or time.
» Setup or fixtures need improvement.

Note: Large repeatability values with many small (zero) reproducibility values

may indicate that the gage/method may have too much variability to
allow for a precise estimate of reproducibility.

Measurement Process Experimentation

A gage variation study, or Gage R&R, looks only at the measurement variation
contributed by the operators and a single gage. Measurement process variation,
however, may be affected by a number of other factors, such as parts, setup,
indexing, time, usage, weatr, or the environment (temperature, vibration, lighting).

Statistically designed experiments are a powerful tool that can be conducted to
evaluate these multiple sources of measurement variation. The DOE appendix
outlines one approach for identifying sources of variation. Many textbooks cover the
subject in much greater breadth and depth (see the references and annotated
bibliography).




1.16 Scatter Diagram

What:

» A plot of one measured variable against another. Paired measurements are
taken on each item and plotted on a standard X-Y graph.

Why:

« To study the possible relationship between one variable and another.

When:
» There is a need to display what happens to one variable when another one
changes (i.e., in order to determine whether two variables are related).
» Performing a DOE.

» Looking for a root cause to an out-of-control point during the use of multivari-
ate SPC (e.g., Hotelling T?).

» Confirming relationships identified in a cause and effect diagram.

» Performing data analysis during the Product, Process, and Problem Analysis
phase of the AQS flow.

How:

 Collect twenty or more paired samples of data believed to be related.
» Construct a data sheet as in figure 1.16.1.

Measurement Quality rating Number of
Number score customer complaints
1 50 30
2 81 10
3 76 11
50 68 21
Figure 1.16.1

» Draw the horizontal and vertical axes of the scatter diagram. The values
marked on the axis should get larger as you move up or to the right on each
axis.

» Label the axes. The variable that is being investigated as the possible “cause”
is on the horizontal axis, and the “effect” variable is on the vertical axis.

* Plot the paired data on the diagram.

Example:

Data was collected to show the effects of tool wear on the inside diameter of a hole.
As expected, the greater the tool wear, the smaller the inside diameter of the hole.
The scatter diagram in figure 1.16.2 shows the magnitude and actual relationship
between the two variables. Decisions can now be made as to the extent of tool
wear allowed depending upon the hole tolerance allowed.
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Inside
Diameter

Tool Wear

Figure 1.16.2 Scatter Diagram Showing the Effects of Tool Wear

Interpretation:

Notice how the plotted points form a clustered pattern in figure 1.16.2. The
direction and “tightness” of the cluster gives a clue as to the type and the
strength of the relationship between the two variables. The more this cluster
resembles a straight line, the stronger the correlation between the variables.

Note: A strong correlation does not necessarily mean that one variable caused
the other. In particular, there could be a third variable that is the cause
for changes in both of the plotted variables, and it is the causal relation-
ships involving this third variable that result in a clustered pattern in the
scatter diagram.

Other patterns are shown in figure 1.16.3.




Other Patterns:

Figure 1.16.3

Positive
correlation

Possible
positive
correlation

No correlation

Possible
negative
correlation

Negative
correlation
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1.17 Statistically Designed
Experiments (DOE)

Introduction:

Earlier sections of this document have described the application of statistical
process control (in particular, control charts of various kinds) to monitor the key
characteristics of a product. A control chart can be viewed as an observational tool
in the sense that it observes the performance of a process. However, the control
chart will not give any information on what happens to the key characteristics of the
product if the process is changed.

Assume that a company is manufacturing a component, the key characteristic of
which is the diameter of a critical hole. The objective is to produce parts with a
hole diameter that is close to some target value within some specification limits.
Control charts can be used to monitor the hole diameter and to determine if the
process is stable and in control. A capability index can be calculated to indicate
how capable the process is of yielding parts that are within the engineering specifi-
cation limits. The likelihood of being able to determine causes of out-of-control
conditions, and of being able to manufacture parts that are within the engineering
specification limits, is increased if the process factors that affect the hole diameter
(for example, drill diameter, drill speed, drill feed rate, or drill geometry) can be
identified, and the degree that the hole diameter is affected by each process factor
can be quantified.

Designed experiments are a powerful tool that can be used to:
+ Identify the key process factors that affect the quality of product.
* Quantify the magnitude of the effect of those factors.
» Determine settings of those factors that lead to superior product characteris-
tics (on target with minimum variation).

By controlling these key process factors, quality can be substantially improved to
the point that process output is not only on target but also more uniform.

Through decreased variability within engineering tolerances, economic losses to
suppliers and Boeing can be substantially reduced, resulting in long-term financial
gains for both parties and greater customer satisfaction.

Designed experiments can and should also be used early in the product design
cycle to improve product design by (1) evaluating alternative designs and (2)
creating robust designs that are less sensitive to manufacturing variation and other
uncontrollable sources of variation.

For similar reasons, statistically designed experiments are often used in research
settings to both improve product design and speed up the design process.

This section provides a brief summary of Design of Experiments (DOE). Section
2.0 provides a brief introduction to DOE. More detail can be found in the refer-
ences mentioned in sections 2.0 and 5.0.

What:

« Statistically designed experiments involve the active, systematic, and con-
trolled changes of process (or product) inputs to induce and observe their
effects on process (or product) output variables (e.g., key characteristics).

Why:

 To center a product on target.
 To reduce process and product variation.




» To gain a better understanding of a production process.
« To identify causes of out-of-control conditions.

« To significantly improve quality and productivity.

To evaluate alternatives both in design and production.
To identify the most influential process input variables.
To identify process settings that reduce variation.

» To improve Cpk.

» To improve product design.

 To capture the maximum amount of process information in the least amount
of time with the fewest tests.

 To develop robust product designs and process designs.
To identify key characteristics.
To establish appropriate part and process tolerances.

When:

» A key characteristic or process is not capable (Cpk < 1.33).
Troubleshooting a problem.

» Key characteristics need to be identified.

» Evaluating alternative product designs.

» Designing a product.

» There is a need to reduce inherent variation in a production process.

Variation always exists in some form. This is particularly true in manufacturing,
where sources of variation are typically found in one or more of the following
categories:

* Measuring devices and equipment.
* Materials, machines, and methods.
« Environmental conditions.

A variety of nuisance factors.

Figure 1.17.1 illustrates a simple process model showing three types of process
inputs that contribute to variation in process output. Controllable process inputs are
variables such as temperature, pressure, and time. These can be actively changed
in the experimental environments (as well as the production environment).

Uncontrollable inputs are those inputs that are often too expensive or impossible to
control in production, but may be possible to control in an experimental environ-
ment. These uncontrollable inputs might include ambient temperature or humidity.
If, in an experimental setting, they are not controlled, they are often called nuisance
factors.

The third type of process inputs that contribute to variation in the process output
are the resources that are used in the manufacturing process. These might include
the raw material, power supply, machine, or operator. It is possible that, for ex-
ample, changes in raw material or differences in the skill level of the operators
might be sources of variation in the output of the process, and these inputs might
be controlled during an experiment. Alternatively, they might not be controlled
during the experiment; in which case, if they vary, they will be nuisance variables.
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Raw material,
machine,
operator,
power supply,
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Controllable process inputs

L 4 4 4

Manufacturing
process

h Output

t t

Uncontrollable or expensive-
to-control process inputs

t t

Humidity Ambient
temperature

Figure 1.17.1 Various Inputs Affect the Manufacturing Process

Even though the discussion below focuses on using DOE in a manufacturing
setting, the same concepts and the process for applying DOE are valid in product
design as well as in research and development. Figure 1.17.2 shows a product

design model with the three types of product inputs.

resin content

Core
density of plies

Prepreg

Requirements
Structural soundness,
stress, envelope,
fatigue, functionality,
output signal, service
life, weight,
performance, cost,
DFM, multi-use.

m—)>

Number

L 4 L4

Controllable product factors

! 3

t

Difficult to control
product factors

Alternative design
configurations.

Material properties.
Manufacturing methods.
Clearances.

Design parameters.

Improved design.
Robust design.
Design for ease of
manufacturability.
Proper tolerances.
Design for reliability.

Product design process r Output Design

Figure 1.17.2 Various Inputs Affect the Product Design




Discussion:

Every process has variation, but as the complexity of a process increases, more
variation is introduced. Unknown sources of variation, and interactions between
known sources, can result in a process with seemingly unexplained defects, flaws,
or inconsistencies in a production environment. These leave chronic waste buried

in production costs and poorer quality in the hands of customers. Experiments are
performed to gain insight about a process so that conclusions and decisions can be
made to improve quality, and to reduce waste, defects, and cycle time.

Statistically designed experiments make it possible to efficiently test many process
(or product) input variables simultaneously while still providing independent assess-
ments of the effect of each on the process output (or product design). In addition,
designed experiments can identify and measure interactions between process
inputs that frequently leave the manufacturer with (what appear to be) mysterious
and unpredictable problems.

The wider the range of conditions investigated in the experiment, the greater
confidence one has in projecting or extending the experimental results to the real
world. And that is where consistent excellence of products rewards manufacturers
for the diligent pursuit of quality.

F Select H Conduct Analyze
Prepare } design experiment %’ results
needed

Inadequate
preparation
Optimize new Add runs to
parameters existing design
Yes
Verify new
4 processing
conditions

Additional
experiments
?
Figure 1.17.3 Design of Experiments Process—
Each experiment is unique, but all designed experiments proceed in a common manner.
The top-level flow chart shown above illustrates the basic steps that are followed during
any designed experiment.

Design
refinements

Errors in
execution

Results
acceptable
?

Yes

Implement
improvements 4
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How:

By the very nature of experimentation, each experimental context presents its own
unique challenges. But there are some basic steps that need to be performed when
embarking on an experiment. The flowchart in figure 1.17.3 gives a high-level view
of the major steps of the entire experimental process:

* Preparation.

Selection of the experimental design.

Conducting the experiment.

Analyzing the results.

» Determining if the results are acceptable.

Verifying improvement.

» Determining if further experimentation is warranted.
» Making the improvements permanent.

The flowchart is influenced greatly by aerospace concerns. At Boeing, manufactur-
ing processes are geared toward high-cost parts and low production runs. This
dictates the need for efficient experiments that capture the greatest amount of
information in the fewest runs. A useful approach in this context is to use a series of
small experiments, with knowledge gained in previous experiments being used to
design a small but efficient new experiment. This approach is known as “sequential
experimentation.”

The major steps in Figure 1.17.3 are outlined next.
Preparation

An experiment is rarely an activity for a single individual. To improve the process of
a production system or to improve the design of a product, it is necessary to work
with an appropriate team that collectively can analyze all aspects regarding the
internal workings and output of the process. Experiments can only be successful if
all relevant sources of variability are considered, and this can only occur if a team
is assembled that is composed of members with subject-matter knowledge of all
aspects of the process.

The first phase involves the formation of the team. When the team has been
formed, the next phase involves a process that focuses the team on identifying the
objective of the experiment and the essential process inputs and outputs. This is
critical, since the experiment’s success hinges on the team’s ability to define an
appropriate experiment. More experiments fail due to poor preparation and
planning than any other cause.
The major elements of this step include

» Selecting the team.
Carefully defining the objectives of the experiment.
Defining the output variables.
Identifying the input factors.
Selecting input factors that will be systematically changed in the experiment.
Identifying the input factors that will be held constant.




« Identifying nuisance factors.
« Identifying possible interactions between the experimental input factors.

The forms found at the end of this section will aid the team in this endeavor.
Selection of the experimental design

In the second step, the actual experimental design is selected. The design de-
scribes the process input factors that will be systematically changed, the settings
for the input factors, the number of factor combinations (runs) to be tested, and the
order in which the runs will be tested. It is important that at least one member of
the team has sufficient theoretical knowledge of designed experiments or has
access to someone who does. This makes it more likely that a design will be
chosen that will reveal the pertinent information in the fewest runs possible.

Conducting the experiment

This step is a collaboration between the experimental design expert and those
most knowledgeable of the process operation. Errors in the conduct of the experi-
ment can invalidate the results altogether, causing the experiment to be rerun. Or
worse, it is possible that a team may not realize that the experiment was conducted
improperly, and misleading or incorrect conclusions may be drawn. The team
should be involved and observe the experiment. Many things are often learned
simply by watching the experiment.

Analyzing the results

The analysis phase identifies the input factors and the interactions between input
factors that have large stand-alone impacts on the output. For those input variables
that significantly affect the output, settings can be chosen that give the best results.
Also, a statistical model can be developed and used to predict the process output
as a function of the inputs.

Determining the acceptability of the resuits

A number of statistical procedures exist to determine the acceptability of the data
from the experiment. For example, errors in the conduct of the experiment can
often be detected through the analysis of the differences between the actual mea-
surements and the predicted values. Such problems may be resolved by simply
transforming the data, or in other cases, it might be necessary to rerun some or all
of the experiment.

Verification of improved parameter settings

The design team must verify the improved parameter settings predicted by the
experimental model through a few confirmation runs. These tests are important,
because it is possible that the new parameter settings were never actually tested
during the course of the experiment itself.

Determining if more optimization is warranted

The best value that can be predicted by the experiment’s results is the “optimal”
value for that particular experiment. It is likely that further improvements are pos-
sible. It becomes a business choice in deciding if further improvement is economi-
cally warranted. If the team determines that more improvement is economically
viable, then additional experiments should be conducted.
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Making improvements permanent

In order to ensure that key process input factors are controlled at the improved
settings, the manufacturing plan and AQS Control Plan must be updated. Control is
not sufficient by itself, however. Process bounds on each parameter must be estab-
lished so, if variation occurs within these bounds, the process output is not affected
in such a way as to make defective products.

Each of the eight steps above is covered in detail in section 2.0, Design of Experi-
ments.

In summary: The purpose of any designed experiment is to reliably identify the
major sources of variability and provide insight into improved and stable operating
regions. In other words, to identify the process input factors and settings that most
influence process and product quality.

Boeing strongly recommends that suppliers use designed experiments. When they
are applied to internal processes, they are virtually guaranteed to improve the
quality of finished hardware.

Experimental Design Guide Sheets

The following pages contain a series of forms that will guide a team in planning an
experiment.

Note: The experiment methods and experiment variables, data, and analysis
results must be recorded. A summary of the experiment is to by placed
on the AQS Control Plan.




1.17.1 Experimental Design Guide Sheets

1. Experiment title:

2. Team leader and organization:

3. Objective of the experiment:

The objective should be unbiased, specific, measurable, of practical consequence, and
yield new knowledge.

4, How results of the experiment will be used:

5. Relevant background on response and control variables:
(Include expert knowledge and experience and theoretical relationships)

6. Team selection:

Functional or process skill requirement Team member assigned Responsible organization

=

©] O N| o U1 B W] N

=
o

[EEN
=

12.

=
w

=
»

Figure 1.17.4
Guide sheets similar to those shown in figure 1.17.4 through 1.17.9 are discussed in Coleman and
Montgomery (1993), “A Systematic Approach to Planning for a Designed Experiment,”
Technometrics 35: 1-27.
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Figure 1.17.5
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Two Ways of Examining Interactions Among Input

Factors

Examine figures 1.17.10 and 1.17.11 and use these notions to help identify pos-
sible interactions, and to complete the table in figure 1.17.9.

If an experiment is run that involves several factors, say A, B, C, and so on, then

any two-factor interaction can be displayed as shown below (use factors A and B as

an example).

The tables in figure 1.17.10 show values for the response variable at each low and
high experimental combination for A and B.

No A-B Interaction

Effect of
High 61 go  changing A
Factor B Y
Low 30 52 52-30 =22
Low High
Factor A

The effect due to the change in factor A does
not depend upon the level of B.

A-B Interaction Present

Effect of
High 61 70  changing A
70-61 =9
Factor B
Low 30 55 55-30 =25
Low High
Factor A

The effect due to the change in factor A
depends upon the level of B. A statistical test
should be used to substantiate this.

Figure 1.17.10

Figure 1.17.11 shows the same data in a different form.

No A-B Interaction
8o} High B
70} /
60 |-
Response 20[ Low B
Variable 40

30}

20
10

0 1 1
Low High

Factor A

A-B Interaction Present

80|

70k HighB

60 | —
Response S0 Low B
Variable 40

30

20

10}

0 1 1
Low High
Factor A

Figure 1.17.11
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1.18 Feedback of Data and
Information

While progressing through the AQS process, various types of data and information
are collected and analyzed. This data is stored in a process database, much of it in
electronic form, some of it on paper.

The purpose of collecting this data and information is to stimulate improvement
actions. Some examples are listed.

« Identifying an out-of-control condition should cause investigation and correc-
tive action to be taken to stabilize a process and reduce variation. This infor-
mation should be used to improve similar processes as well as the one being
studied.

 Collecting defect, scrap, rework, and waste data should invoke problem-
solving exercises to reduce waste, and cause further analysis using the tools
described in this book.

» Process capability data can be used in many ways. For example, it can help
identify processes needing improvement— it can be fed back to Engineering
to help perform tolerance analysis and tolerance allocation during the design
of a product (e.g., through statistical variation analysis).

» Capturing the information resulting from a risk analysis and feeding it back to
Engineering should support better and more robust designs; feeding the
occurrence rating information back to manufacturing should improve produc-
tion processes.

» Using capability analyses can determine which machines should be used to
achieve a desired quality level (see the discussion below).

» Using lessons learned in processes and problem areas should avoid wasted
effort and facilitate product and process improvement.

The important idea is to collect data and information and use it to improve
products and processes. This is one of the major objectives of AQS.

Management

Research

Marketing

Development
Customer
Design
Delivery

Purchasing

Test/Inspect

Feedb d

Process
Planning

ack / Lessons Lea™®
Manufacturing
Process
Database

Figure 1.18.1 AQS data provides immediate feedback to the operator, but also to
manufacturing, planning, engineering, and management, so that products and processes
can be improved using factual information.




Example: Using Cpk in Contract Proposals and
Developing Manufacturing Plans

What:

» A valuable way to use Cpk information contained in the process database to
predict whether new parts can be manufactured within existing capabilities, or
to decide which machines or processes offer the best opportunity for highest
quality within economic constraints.

When:

» Preparing contract proposals or during preparation of manufacturing plans.

How:

* By using a graph to estimate a machine’s capability to produce identical or
similar part features as a function of tolerance. The graph is constructed by
first plotting Cpk values obtained from past production runs against the
corresponding tolerances, and then drawing a line (called the “Cpk prediction
line”) that best fits these points. The resulting prediction line permits a rea-
sonable estimate of the performance of a machine to make a particular part
feature at a specified tolerance.

Applications:

Case 1: Using historical data to decide whether to submit a bid for a new patrt.

Consider the case of a supplier who wants to assess whether the existing
capability of a machine is adequate to justify preparing a bid on a new
part. Suppose this part has a key characteristic similar to others made
previously by this machine, and that a historical database exists. Past
Cpk values are plotted on a graph (fig. 1.18.2) and a prediction line is
sketched through them. If the supplier needs a Cpk=1.5 to avoid
economic loss, then the figure suggests the supplier should not bid if the
tolerance on the new part is .015 inch or less. However, should the
supplier decide to bid anyway, figure 1.18.2 points to a need for either
improving the current machine’s capability or for acquiring a more capable

machine.
3.0 X
2.0 X Cpk Prediction Line
Predicted Cpk  [--——----"--"-""-""""-"-"°5 :
|
1.0 |
X |
|
|
0 |
.005 .010 .015 .020 .025
Tolerance

Figure 1.18.2 Cpk Prediction Line— X’s mark historical values.
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Case 2: Using historical data to decide which machine to use.

Consider the case of a production planner trying to decide which of two
machines to use to make a certain part feature. Figures 1.18.3 and 1.18.4
are the result of plotting historical Cpk data on each machine and then
drawing prediction lines through the data. The figures show that if the
planner’s decision is based on achieving Cpk=1.5, then machine 1 is
capable for tolerances at or greater than 0.075 inch, while machine 2 is
capable for tolerances greater than 0.100 inch. If machine 2 is less costly
to operate, then it might be selected for parts with tolerances greater than
0.100 inch.

3.0 X 3.0
2 %
@) O X
< 20 5 20
Q [¢]
- e S Sy S Y S
g 3}
E 1.0 | g 1.0 i
o - | o I
| |
|
025 .050 .075 .100 .125 .150 025 .050 .075 .100 .125 .150
Tolerance Tolerance
Figure 1.18.3 Cpk Prediction Line for Figure 1.18.4. Cpk Prediction Line for
Machine 1 Machine 2

Notes: 1. |If the historical data suggest a relationship between tolerance and

Cpk that is not a straight line rising from lower left to upper right, then
other factors may be affecting machine performance. Potential factors
might include experience of operator, production rate, allowed setup
time, frequency of machine maintenance, or quality of raw materials.
(The process database should contain records of these factors.) In such
cases, draw a smooth curve through the plot points, using best judgment
to estimate where the curve should lie (or alternatively using a statistical
technique known as “regression analysis”). Treat these curves as you
would straight prediction lines.

2. The best region for predictive results lies between the extreme left
plot point and the extreme right plot point. Extending a prediction line
beyond these extremes could result in poor predictions.




1.19 Hardware Variability Control
(HVC)

What:

In Boeing Commercial Airplane Group Operating Procedure-Agreement 6-1000-
183, Hardware Variability Control: Designing and Building for Advanced Quality,
Hardware Variability Control (HVC) is defined as the cross-functional management
of design and build processes that impact the fit, performance, and service life of
product hardware.

HVC is a systematic approach that is used to aggressively attack the sources of
hardware variation throughout the design and build processes. Two strategies used
to reduce the effects of variation are 1) to design the products so as to reduce the
impact of variation, and 2) to optimize processes to minimize variation. HVC
accomplishes these strategies through the use of sound manufacturing practices
described in this section.

HVC includes many of the concepts described in D1-9000. However, because a
major airframe manufacturer like Boeing has extensive responsibilities for design,
HVC also focuses on quality disciplines for the design of products as well as for
production processes. HVC should be looked at as a complementary tool that
works with AQS to accomplish the goal of creating robust designs and reliable
processes. Information on how HVC is linked to AQS can be found in Boeing
Document D1-9011, Variation Control: Linking Hardware Variability Control and
Advanced Quality System, available to both Boeing organizations and external
suppliers. figure 1.19.11 shows the complementary relationship between AQS and
HVC.

Why:
 To control variation at its source in all product designs and processes
in order to
* Improve quality
* Reduce and prevent defects
* Reduce product cost
* Reduce cycle time
» Exceed customer expectations for products

When:

* HVC is implemented inside the Boeing Company on
» All new designs and derivative products.

 Existing designs and processes in accordance with approved business
plans.

» HVC is implemented by Boeing suppliers when participating on Boeing
programs that have implemented HVC, and

» When they are responsible for the product design or own the design, and

» When they are responsible for creating a build plan and producing a new
or revised product, and

* When D1-9011 is contractually required on new or renegotiated contracts.
Inclusion in supplier contracts is to be determined jointly by the Boeing
Materiel organization and the relevant Boeing program.
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Conditions:

 All appropriate Boeing business units and their lower tier suppliers must be
included from the beginning of implementation efforts.

» Implementation must include all functions normally involved in the design and
building of the product. These functions would typically include, but are not
limited to, design engineering, manufacturing engineering, tooling, factory,
industrial engineering, quality assurance, materiel, and often, external suppli-
ers.

* Involved functions must work in a team environment and coproduce
deliverables of the HVC process.

» Communication between teams must occur regardless of company, political,
or geographical boundaries.

How:

HVC works together with AQS to reduce variation by bringing about a global per-
spective in designing and building products. This perspective embraces a recogni-
tion that airplanes are built by a large number of individuals or groups in Boeing
and across the world that relate to one another on a customer-supplier basis.
Visualizing this network of customers and suppliers from raw materials to the end
product creates a large diagram referred to as the “build tree.” Each box of the tree
diagram represents work being accomplished on the product, and its location is
referred to as a “build position.” The customer-supplier relationship between build
positions exists within and between companies (Boeing or external supplier).

Alone, AQS is able to do a lot to improve the quality of the product as it is built.
AQS continuously applies the PDCA cycle of the AQS flow to achieve the desired
level of quality. AQS is a way to improve processes to make quality products in
spite of the product or process design.
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Whether looking at new or existing designs of products, HVC puts emphasis and
resources into the evaluation and elimination of sources of variation within the
product and process definition, as well as within build processes. The goal is to
reduce the sources of variation caused by design so that we have less variation to
deal with during the production phase. Then we can reduce the remaining varia-
tion, using the tools of AQS to achieve customer satisfaction within a smaller
number of build cycles.

The HVC Process

HVC emphasizes the Plan phase of the Plan-Do-Check-Act cycle, where the most
leverage can be gained to improve quality. HVC turns the four phases of a project
into a continuously repeating cycle of process and product improvement. HVC
specifies deliverables for each phase of the cycle.

With Hardware Variahility Control

P
<

Figure 1.19.2 HVC Emphasis to Control Variation—
Planning to reduce variation and its effects in the early stages of a program replaces
nonvalue-added reaction with action that continuously improves processes.

The deliverables of the Plan phase are a product design and a standard build
process that are integrated and that fully incorporate customer requirements.

In the Do phase, the deliverable is the product, which is built and measured ac-
cording to the standard process defined in the plan.

In the Check phase, the deliverable is an analysis of product and process accept-
ability.

In the Act phase, the deliverable is a plan to improve the process if the product
does not meet customer needs, or to maintain the process if the customer is
satisfied with the product.

The Plan-Do-Check-Act cycle begins again as any improvement plan is translated
into design improvements and manufacturing process improvements in the Plan
phase.

HVC contains eight steps (labeled A through H) that must be followed through the
various phases to produce the deliverables (see figure 1.19.4). The following is a
description of each phase of the process for both new and existing product de-
signs.
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Figure 1.19.3 HVC Deliverables—
The HVC process specifies deliverables for the Plan, Do, Check, and Act phases.

New Design

In new design, the steps of Hardware Variability Control are applied to the manu-
facture of a new airplane or a major redesign, where new engineering, planning,
and tooling are required.

The activities that are accomplished during the plan phase are critical to producing
a robust design of the product and processes. By using HVC to accomplish each
of the tasks, a product will be designed that minimizes the impact of variation in the
manufacturing processes and the product operating environment. The following is
the list of activities that must be accomplished in the Plan phase.

* In Step A, Establish Product Requirements:

» Top-level customer key requirements are identified for fit, performance,
service life, safety, and appearance of the overall product.

» General requirements affecting the marketing of a product are channeled
to Engineering by way of the Customer Services and Sales and Marketing
organizations. Engineering converts these to top-level product require-
ments and enters them into configuration documents, design require-
ments and objectives documents, lofting lines, and a top-level drawing
showing key characteristics and datums (Figure 1.19.5).
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Figure 1.19.4a HVC/AQS Process for New Designs—See figure 1.19.4b for a linear
layout of this figure. (Numbers in bold are D1-9000 sections relevant to the
activities in each step.)
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Figure 1.19.6 Design-as-Built—
Traditionally, design-as-built means that engineering designs and deliverable hardware
correspond at each build position, from the program-wide level down to the individual
detail drawing.

* In Step B, Establish a Design/Build Quality Process Foundation:

» A build tree is created representing a top-down customer-supplier com-
munication network based around the way the product is built.

» The drawing tree and the build tree are compared to ensure the design
matches the way the product will be built (design-as-built).

A cross-functional team structure is established in such a way that it
promotes the flow of information. Information starts at the highest airplane
level and flows down to the smallest bracket or resistor.

 Build position owners (BPO) are identified for each build position on the
build tree. These owners are responsible for integration and communica-
tion of everything for that build position concerning the product and pro-
cess design, as well as for building of the product.

Build Tree
Build BPO (factory)
position

Coordination

Coordination

Build Build
position position BPO (factory)
7
BPO (factory) co?matlon \
Coordination
Build Build
position | | position BPO (factory)
BPO (factory)
Figure 1.19.7




* In Step C, Define an Integrated Design and Build Process:

Product datums are established that match the way the part is used in the
next higher level build position (datums match the part or tool indexes).
This approach allows us to eliminate much of the tolerance stack-up
problems created by changing points of reference constantly throughout
the buildup of the product.

Key characteristics are identified that flow down the build tree from the top
customer requirements. The key characteristics are identified relative to
the build position datums and indexes.

An engineering drawing is established for each build position (design-as-
built), and key characteristics are documented on each drawing relative to
the build position datums.

and Datum/Index Flowdown

X 1.1y |:|z

- e ——

EI | Assembly XYZ

X1.1Y E 7
KEY KEY
-A- -A-
Assembly XY Detail Z

| I
[ ]

X Y ¢

—= |KEY | —— KEY ——
-A- -A-
Detail X Detail Y

Figure 1.19.8
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» A standard process is created for each build position to build and measure
products. This approach allows attainment of process stability faster by
reducing variation due to multiple processes, process interpretations, or
measurement system variation.

Build Tree

: ¢ Design
Design ¢ Robust
Standard Coordination - Fewer, simpler parts
process WITHIN - Design for producibility

build position ¢ Coordinated
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manufacturing capabilities
I . - Datums to indexes
Build - Testing requirements
I 1 Position
B B 4— Standard process is
Reliable single source for
Standard Standard Process L4 Indexing
process process /J _ Part_to_part
Coordination . I-\A::st_r:)r;:::tl plan
BETWEEN

. A, Manufacturing plan
build positions ¢ Training/certification
‘ requirements

C e Quality requirements
Standard Standard
process process
Build

Position

“ Reliable

Process

|

Figure 1.19.9 Coordination Within and Between Build Positions

» Tolerances are set to match the capabilities of the process defined for
producing the part. This approach allows us to achieve high-level key
characteristic capability indices of 1.33 or greater much faster than previ-
ously.

» The conditions of restraint are defined for measurement of flexible parts
so that process variation is hot masked by the measurement technique.

* In Step D, Prepare to Build:
» The standard process documentation started in Step C is completed.

 Tools are designed and built with coordinated indexing and measurement
features.

» Shop paper is created with detailed instructions sequencing the build and
measurement steps.

» The build and measurement process is verified.
» Shop personnel are trained and certified to the standard process.




The Do phase (Step E, Build and Measure Product) includes all the activities
involved in building the product, measuring key characteristics, and recording the
measurements on statistical process control charts in accordance with D1-9000
and the documented standard process.

The Check phase (Step F, Determine Whether the Product Meets Customer
Needs) includes activities both before and after delivery of the product. Before
delivery, we use facts and data to determine whether the established standard
process is being followed and whether it is in statistical control and capable of
meeting specifications (i.e., reliable). After delivery, we check with the customer
build positions to see whether they are satisfied, and use the feedback to deter-
mine whether improvements must be made to the processes or if improvements
implemented in an earlier cycle are having the desired effect.

In the Act phase (Step G, Develop Improvement Actions and Step H, Confirm
Process Acceptance), we act on what we discovered in the Check phase. We use
measurement data as a basis to define process improvements. Ideally, we can act
to correct a process before products are delivered, but the aim is always to act very
quickly to address any concerns that an internal or external customer brings to our
attention.

If the process is reliable, we take the necessary steps to maintain the process and
obtain process acceptance (Step H).

Itis in the Do, Check, and Act phases where HVC and AQS really start to work
together. Many of the tools and philosophies of AQS are used in conjunction with
HVC activities to achieve the goal of obtaining reliable processes and process
acceptance. lItis also in these phases where payback occurs for the hard work put
in during the Plan phase.

Existing Design

The basic methods for implementing HVC/AQS on an existing design are the same
as those described for a new design. The biggest difference between HVC/AQS for
new and existing programs is that an existing program has established design and
build processes, which do not generally offer all the benefits of coordinated design
and build activities. Because correcting uncoordinated drawings, planning, and
tooling requires a significant commitment of resources, the decision to implement
HVC on existing airplane programs must be made on a case-by-case basis. The
four typical problems in existing design are

» Drawing trees don’t match the build tree.

» Drawing datums don’t match part indexing.

* Indexing is not coordinated throughout the build tree.

 Tooling is not set up to take variable measurements of key characteristics.
Because correcting these kinds of problems on an existing program may expend
significant resources, the HVC/AQS process for existing designs calls for extensive
analysis at the outset to arrive at recommended changes. These changes must be

approved by management before the detailed HVC/AQS Plan-Do-Check-Act
process begins.
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The process for existing designs follows the general flow outlined for new designs,

once proposed changes have been approved. For existing designs, effort is made

to modify existing tooling and planning, much as is done when moving from the Act
to the Plan phase on a new design.

For further background information on HVC and how the process works, see
Boeing Document D6-57000TN, Hardware Variability Control: Desktop Reference
Guide.
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Figure 1.19.10 HVC/AQS Process for New and Existing Designs.
(Numbers in bold are D1-9000 sections relevant to the activities in each step.)




AQS and HVC Coordination

Figure 1.19.11 provides a high-level view of the relationship between AQS and
HVC.

HVC + AQS

characteristics
Characteristics
where variation
is hurtful or
costly

e Ensure datums on engineering drawings are coordinated with
indexing/location features on hardware for the assembly process.

¢ Ensure engineering tolerances are allocated in conjunction with

ch process capabilities.

e Coordinate the drawing tree and build tree.

e Determine customer requirements and define key characteristics
using a top-down approach: start at airplane level and flow down.

e Ensure customer - supplier coordination and involvement.
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Figure 1.19.11 The Complementary Nature of AQS and HVC
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2.0 Design of Experiments (DOE)

2.1 Introduction*

This document has described some of the tools and techniques associated with
AQS that have proven to be successful in enabling companies to produce superior
products. For example, several problem identification, problem solving, and process
analysis methods have been discussed. In addition, this document has described
the application of statistical control charts of various kinds to monitor the key char-
acteristics of a product, giving an indication of whether the process is stable and
when unusual events occur. This document also has described how a capability
analysis can be performed on the output from a stable process to determine if the
process is capable of yielding products that target nominal with minimum variation,
and then how to improve those process capabilities.

The Design of Experiments methodology is another tool that should be in the tool-
box of those interested in improving the quality of products and processes. It is a
tool that complements the other tools associated with problem solving and statisti-
cal process control. Just as both a hammer and a screwdriver can be found in a
toolbox, and each used for different situations, so design of experiments, statistical
process control, and the other quality improvement methods are different tools to be
used for different situations. None is as powerful alone as they are when they are

applied together.
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Quality Improvement Tools

To illustrate the complementary aspect of these tools for quality improvement,
consider a company that is manufacturing a component, and one of the processes
used is a routing process. Suppose that it has been determined that the key charac-
teristic is a particular dimension of the part. The routing process has many factors
that might affect this particular part dimension including, for example, cutter diam-
eter, cutter speed, cutter feed rate, cutter bit type, cutter geometry, and lubrication. If
the key characteristic is in statistical control but the process is not capable (either
because the process exhibits too much variability or because the process is not
centered on the nominal), then without knowing how the process factors affect the
part dimension it may be impossible to determine how to set the process factors to
reduce the process variation, or to center the process on nominal so that process

capability is improved.
* Also see section 1.17, Statistically Designed Experiments
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Design of Experiments methodology is a tool that can be used to identify the factors
that affect the process, and to quantify the degree that the process output is af-
fected by each factor. This information can be used to improve the process capabil-
ity by reducing process variability or by centering the process average on nominal. If
a process is not in statistical control, information on which factors affect the process
can be used to bring an unstable process into statistical control. A process that is in
statistical control and capable can be monitored by applying the tools associated
with statistical process control.

The discussion above describes the use of Design of Experiments methodology to
improve a manufacturing process. Design of Experiments methodology is also

an important tool for developing a new product or improving an existing

product design. It can be used to identify and study the design variables that affect
product performance or to compare alternative designs. This information can be
used to design a superior product with a shorter development cycle that has re-
duced cost and improved manufacturability, reliability, maintainability, as well as
robustness to uncontrollable sources of variability from incoming raw materials, the
manufacturing environment, or the end-use customer.

2.1.1 Motivating Example

To motivate and illustrate some of the key concepts in experimental design, con-
sider the following example.

In a paint-spraying process a particular defect in the finish of the painted surface is
that of orange peel, or bubbles. Over an extended period of time a paint-spraying
shop has experienced an excessive number of these particular defects. An operator
at the shop believes that the number of defects could be reduced by increasing the
paint/air ratio used in the paint gun. How can this theory be tested?

This example has many counterparts in everyday life. For example, suppose it takes
you 30 minutes to drive to work when you leave at 7:30 a.m. You believe that it will
take less time if you leave at 7:15 a.m. How can you test this theory? As another
example, suppose that your homemade chili is somewhat bland. A colleague at
work claims that you need to add a certain quantity of a particular spice. How can
you test this claim? Everyday life is full of similar examples of testing to see whether
something can be improved. Testing theories is something that we all do.

There are many possible ways that the paint-spray operator can test the theory that
increasing the paint/air ratio will reduce the number of surface finish defects.

One possible procedure that the operator can use is as follows:
* Obtain 10 test panels.

» Spray these panels at a higher paint/air ratio than that used in current produc-
tion.

» Compare the number of defects from these test panels with the historical
defect rate from past production.

There are some drawbacks with adopting this approach, since any conclusion on
whether the higher paint/air ratio is preferable or not would depend on several
assumptions. In particular, it would be necessary to assume that the past produc-
tion data were all obtained from using the current paint/air ratio, that there are no
differences in defect rate simply due to whether you spray-paint test panels or
production parts, and that there are no other differences in the paint-spraying
process between production and the test. These might be unreasonable assump-
tions.




A better approach for running the experiment is as follows:
» Obtain 20 test panels of identical size and material.

» Spray 10 panels at the currently used paint/air ratio and 10 at a higher paint/
air ratio, in a random order— ensuring that all other variables in the process
are held constant for all 20 test panels.

» Evaluate, in a random order each of the test panels on a scale of 1t0 5, 1
being very poor surface-finish quality and 5 being superior surface-finish
quality.

 Calculate the average score for the panels painted with the current paint/air
ratio and for those painted with the higher paint/air ratio, and compare the
average scores. (A statistical test would compare the difference in the average
scores against the variability in test scores for panels painted with the same
paint/air ratio.)

This approach is preferable because the comparison between the two paint/air
ratios is made on similar parts that were painted at the same time and under identi-
cal circumstances. However, the validity of this approach is still dependent on the
assumption that the results based on test panels of a particular size and material
are generalizable to the production parts and process.

Thus it can be seen that, although there are alternative ways of setting up a test,
some approaches will be better than others. One of the goals of Design of Experi-
ments methodology is to set up the test in the most efficient and economical way so
that the information that is obtained is of value and can be depended upon when
making decisions.

Now consider an extension of the example of the paint-spraying process and sup-
pose that the operator believes that there are many potential causes for the exces-
sive number of surface-finish defects. These could include

* Paint/air ratio.

* Paint viscosity.

* Paint supplier.

» Type of paint gun.

* Nozzle size of paint gun.

 Surface cleanliness of the parts.

* Distance of gun nozzle to part surface.

* Ambient temperature.

* Ambient humidity.
Now the objective for the operator might be to set up a test plan to determine which
of these potential causes have an effect on the surface-finish quality and which
ones do not affect surface quality. Furthermore, it would be important to know how
to establish settings for the variables that impact the paint-spraying process so that

the surface-finish defects will be minimized, resulting in parts of consistent high
quality.

Most processes are complex and have many potential causes that affect the pro-
cess output characteristics of interest. As the number of potential causes increases,
an experiment that yields valuable information will become more complicated to
conduct. The increased complication leads to a greater likelihood that something of
importance will be overlooked and that the conclusions will depend on assumptions
that the experimenter has failed to consider. This could result in misleading, incor-
rect decisions and costly mistakes.
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As a result, the experimenter needs a planned, organized strategy of experimenta-
tion to follow that will increase the likelihood that the test will yield valuable informa-
tion. Design of Experiments methodology provides such a strategy. The Design of
Experiments methodology can be used to set up a test program that efficiently and
economically determines which factors affect the outputs from a process or product
and how to set those factors to improve process and product quality.

Statistically designed experiments involve the active, systematic, and con-
trolled change of process (or product) inputs to induce and observe their
effects on process (or product) output variables (e.g., key characteristics).

In the paint-spraying example, the use of Design of Experiments methodology to
reduce the number of defects in surface finish was described. An experiment could
have been planned to center a process on target; for example, to identify the causes
of variability in paint thickness and to establish the settings of nozzle size, paint/air
mix, and paint viscosity to obtain a target paint thickness.

The reasons for conducting a designed experiment are many and varied. Possible
reasons include
» To center a process on target.
 To reduce process and product variation.
» To gain a better understanding of a production process.
« To identify causes of out-of-control conditions.
To evaluate alternatives in both product and process designs.
To identify the most influential process input variables.
To identify process settings that reduce variation.
» To improve Cpk.
» To improve product design.
To develop robust products and processes.
To identify key characteristics.
To establish appropriate part and process tolerances.

2.1.2 Terminology

As with any technical field, terminology has been developed which is useful to
understand. In this section we will introduce some terms commonly used in the field
of Design of Experiments. This terminology will be illustrated using the simple
designed experiment on a machining process given in figure 2.1.

A response variable is the measurable output of a process or quality characteristic
of a part. A common synonym is output variable. In figure 2.1 the response vari-
ables are hole diameter and surface finish. Other examples of response variables
are part dimensions, yield, hardness, number of defects, processing time, output
voltage, gap, peel strength, tensile strength, and the variability of a response of
interest (usually measured by the standard deviation of the response). It is possible
to measure multiple response variables in an experiment; for example, hole diam-
eter and surface finish as in figure 2.1, or number of paint defects and paint thick-
ness as in the previous example.

An input factor is a variable in the process or product design that can be changed
in a controlled manner by the experimenter and that is thought to affect the re-
sponse variable(s). Common synonyms are process variable, process parameter,
design variable, or independent variable. The objective of the experiment is to




Input Factors Response Variables
Drill Speed | Drill Feed Rate | Fixture [ [o] [ Surface

(rpm) (in/rev) Diameter Finish
1 2000 .005 A .1854 45
2 4000 .005 A .1854 30
3 2000 .010 A .1860 60
4 4000 .010 A .1856 50
5 2000 .005 B .1856 50
6 4000 .005 B .1860 40
7 2000 .010 B .1862 60
8 4000 .010 B .1856 55

Figure 2.1 A Simple, Full Factorial Designed Experiment
With Three Input Factors and Two Response Variables

determine the effect of the input factors on the response variable(s). In figure 2.1
the input factors are drill speed, drill feed rate, and fixture type. Other examples of
input factors are time, temperature, pressure, drill type, drill diameter, resin density,
chemical concentration, lubricant, supplier, oven location, and assembly sequence.

A nuisance variable is a variable that can affect the response variable but that
cannot be actively controlled by the experimenter. A common synonym is noise
variable. Examples of nuisance variables are raw material differences, ambient
temperature and humidity, machine warmup, voltage fluctuations, vibration, and tool
wear. Nuisance variables are of particular concern to experimenters because it is
frequently impossible to identify their effect on the experimental results, and they
can make important factors seem to be unimportant and can make unimportant
factors seem to be important. Using appropriate experimental designs and proce-
dures can minimize or remove biases that might occur in the experimental results
due to nuisance variables.

A factor level is a value of an input factor used or tested in the experiment. Com-
mon synonyms are factor setting or test value. In an experimental design two or
more levels are defined for each of the input factors. Examples of factor levels would
be temperature at 350°F and 400°F, drill speed at 2000 rpm and 4000 rpm, lubricant
used or not used, fixture type A and B, and assembly sequence steps ABC and
steps BCA (see figure 2.2).

An experimental run is a specific combination of test levels of the input factors that
are used in the experiment as well as the measurement of the associated response
variable(s). As an example, in figure 2.1 the input factors are drill speed (with levels
2000 rpm and 4000 rpm), drill feed rate (with levels 0.005 in/rev and 0.010 in/rev)
and fixture type (with levels A and B), and the response variables are hole diameter
and surface finish. An experimental run might be the machining of a part with drill
speed of 2000 rpm, feed rate of 0.005 in/rev, fixture type A, and the measurement
of the hole diameter and surface finish of that part.
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Temperature (°F) 350 400
Drill speed (rpm) 2000 4000
Lubricant On Off
Fixture type A B
Assembly steps A then B B then C
then C then A

Figure 2.2 Examples of Factor Levels for a Designed Experiment

A designed experiment is a collection of experimental runs that are selected and
run in a planned, organized test plan. For the machining example, the designed
experiment might consist of the eight unique experimental runs that can be con-
structed from the three input factors, each with two factor levels. This designed
experiment is shown in figure 2.1. Other types of experimental designs can be
constructed and will be discussed later.

2.1.3 Examples of the Application of Design of
Experiments

As mentioned above, Design of Experiments methodology can be used to improve
a manufacturing process or to improve product designs. This section contains
several examples of the use of experimental design to achieve improvements in
process and product quality. These examples are of a fabrication process, an
assembly process, a product design, robust design on product parameters, and
robust design on process parameters.

* Fabrication process

The thickness of an aluminum forging showed excessive variation and tended to be
above nominal, resulting in problems during subsequent assembly processes. A
team was established to study the forging process and to determine the process
variables that affected the forging thickness. The objectives were to determine the
process variable settings that would reduce the variability in the forging thickness, to
determine the process variable settings that would center the forging thickness on
nominal, and to determine the process variable settings that would yield a satisfac-
tory surface finish.

The process variables considered were the die temperature, stock temperature,
forging technique, lubrication level, and dwell time. Two settings were chosen for
each of the process variables for the experiment.

Five forgings were made at each possible combination of the process variables and
eight measurements of thickness were made at set points on each forging (see
figure 2.3). The analysis identified the process variables that affected the average
forging thickness and those that affected the variability in forging thickness. This led
to new process settings that halved the variability in the forging thickness, and
adjusted the forging thickness closer to nominal, thus resulting in a dramatic in-
crease in Cpk and significant cost savings during the assembly process.




Input Test Measurements
Factors | Levels 1 2 3 4 5 6 7 8
Die temp x1 =p| Forging 1
Stock temp x2 =) | Forging 2
Technique x3 | Forging 3
Lubrication x4 = Forging 4
Dwell time x5 —p| Forging 5

Figure 2.3 An Example of One Experimental Run in a Forging Experiment—
The input factors are set (x1, x2, x3, x4, x5). Then five forgings are produced for that
combination of settings, and eight thickness measurements are taken on each forging.

» Assembly process

There were excessive gaps and out-of-flatness conditions in an assembly process
for a particular aircraft component. The process of assembling the component
consisted of clamping together subassemblies at three locations. A team investigat-
ing this process identified as process factors the clamping pressures that were
applied at the three locations and the sequence of clamping. For the experiment, it
was decided to study each of the clamping pressures at two levels and to consider
two alternative clamping sequences.

An experiment was run that involved making one assembly at each of the 16 pos-
sible combinations of the process factors (see figure 2.4). A design that uses
experimental runs at all possible combinations of the factor settings is called a full
factorial design. The gap and flatness of each assembly was measured. The experi-
mental results indicated significant effects on gap and flatness due to the joint
(interaction) effects between two of the clamping pressures and the clamping
sequence. (A graphical illustration of one of these interaction effects is shown in
figure 2.5). The results of this designed experiment led to improved settings for the
clamp pressures and clamping sequence that could not have been predicted if the
team had run a “one-factor-at-a-time” experiment.

* Product design

A project team was established to look at new designs for composite honeycomb
structures that would reduce impact damage from hailstorms. The team considered
new materials and designs that might result in a composite structure that had
increased resistance to hailstones, but with minimal increase in weight or cost. The
team identified the skin material, number of skin plies, core type, core density, core
cell size, resin type, and adhesive quantity as factors in the product design that
might affect the damage level. For some of these factors the team defined two levels
of interest, for other factors there were more then two settings of the factor to study.

The team built composite panels consisting of various combinations of these factor
levels and determined the damage that resulted from impact at an appropriate
energy level. An experiment that necessitated building panels for all of the combina-
tions of the factor levels would have been too costly. However, valuable information
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Input Factors Response
Run| Clamp A | Clamp B Clamp C Clamping Variables
Pressure | Pressure | Pressure Sequence Gap [Flatness

1 Low Low Low Athen B then C
2 High Low Low A then B then C
3 Low High Low Athen B then C
4 High High Low A then B then C
5 Low Low High Athen B then C
6 High Low High A then B then C
7 Low High High Athen B then C
8 High High High A then B then C
9 Low Low Low B then C then A
10 High Low Low B then C then A
11 Low High Low B then C then A
12 High High Low B then C then A
13 Low Low High B then C then A
14 High Low High B then C then A
15 Low High High B then C then A
16 High High High B then C then A

Figure 2.4 A Full Factorial Design for an Assembly Process—
Four input factors at two levels with two response variables measured on each part for
each experimental combination (run).

on the factors that affect the level of damage was obtained by building only a few,
properly selected, panel configurations from the set of all possible panels, using
what is called a fractional factorial design. The designed experiment gave informa-
tion on how much improvement in damage resistance could be expected with
alternative design configurations.
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Figure 2.5 Interaction Effect of Clamp A Pressure and Clamping Sequence on Gap

* Robust design: testing product parameters

A team is developing a new electronic product to be insensitive (robust) to the
ranges of temperature and humidity that the product will experience in service. The
team has a current design and a prototype design to test in a laboratory where it
can control precisely the temperature and humidity and measure the outputs (volt-
age measurements on five channels). The team chose two test settings for tem-
perature and humidity at the extremes of service experience.

An experiment was run that used a set of three of both the current and prototype
designs at each of the four combinations of the temperature and humidity. The
reason for testing a set of three for each design was to ensure that the experiment
included some of the inherent variation in the manufacturing process. Analysis of
the data from the experiment indicated that the prototype design was more robust
(less sensitive) to changes in humidity and temperature than the current design. The
plot in figure 2.6 illustrates the robustness of the prototype design to humidity
changes.

15
Current Design
P B Prototype Design
Response | ETTTT
5 -
| |

25% 75%
Relative Humidity

Figure 2.6 Robust Design: Testing Product Parameters—
The prototype design is less sensitive to humidity changes.
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Process Input Factors

Hold Gas Removal
Temperature Flow Rate Temperature
1 Low Low Low Low
2 High Low Low High
3 Low High Low High
4 High High Low Low
5 Low Low High High
6 High Low High Low
7 Low High High Low
8 High High High High

Figure 2.7 Robust Design: Testing Process Parameters—
An eight run experiment to identify the combination of heat-treat process factors and
settings that result in part growth that is insensitive to part orientation and
location in the oven.

* Robust design: testing process parameters

Parts in a heat-treat process were experiencing unpredictable growth, causing
some parts to grow outside of the specification limits and be rejected as scrap. It
was surmised by the engineering team that irregular growth was due to the orienta-
tion of the part in the oven and the part’s location in the oven. Since it was desirable
to heat treat a maximum number of parts in each oven load, it was important to be
able to determine a set of heat-treat processing conditions that would result in
minimum growth for heat-treated parts in both a horizontal and vertical orientation,
and at both the top and bottom locations in the oven.

Four process factors were identified: hold temperature, dwell time, gas flow rate,
and temperature at removal. The team defined two settings for each of the process
factors. The experiment used eight runs of the oven, as shown in figure 2.7 (a
fractional factorial design, that is, a particular selection of half of the 16 possibilities
defined by all combinations of the process factors at two settings). For each oven
run, parts were placed at both the top and the bottom of the oven and in both
orientations.

The experimental results indicated an unsuspected effect due to oven location, with
parts in the bottom of the oven experiencing less growth than those in the top of the
oven. The analysis indicated that a particular combination of hold temperature and
dwell time would result in part growth that is insensitive (or robust) to part orienta-
tion and part location. Furthermore, the experiment indicated that temperature at
removal did not affect part growth, leading to the conclusion that parts could be
removed from the oven at a higher temperature; thus resulting in savings in run
time.




2.2 Overview of the Design of Experiments Process

As the previous section illustrated, Design of Experiments can be applied in a wide
range of scientific, engineering, and manufacturing fields. The reasons for running
an experiment are numerous. The complexity and challenges of each experimental
context mean that each experiment is, in a sense, unique and like no other experi-
ment. There are, however, some basic steps that are common to most, if not all,
experiments and these define the Design of Experiments process. The flowchart in
figure 2.8 gives a high-level view of the main steps in the Design of Experiments
process. The main steps of the Design of Experiments process are summarized
below. In the sections following this overview, these steps will be discussed in more
detail.

Note: Section 2.2.9 is not a step in the DOE process but a philosophical
Statement of strategy.

2.2.1 Prepare for the Experiment

The preparation phase is the most important step in the Design of Experiments
process. More experiments fail due to poor preparation and planning than any other
cause. Rarely can statistical analysis salvage a poorly planned experiment. There-
fore, time invested upfront in the preparation stage is time well spent and can mean
the difference between learning about the process and significantly improving
guality and reducing costs, or investing large amounts of time and money to con-
duct an experiment that reveals little about the process— or worse, leads to invalid,
misleading, or incorrect conclusions.

Select
design

Analyze
results

|

Results
acceptable
?

Conduct _}
experiment

A
Errors in
execution
Add runs to
existing design

Yes

Prepare

Inadequate
Preparation
Optimize new
parameters

-

Design
refinements
needed

No

Yes

Implement 4
improvements

Additional

experiments
?

S

Verify new
processing
conditions

Figure 2.8 Design of Experiments Process—
Each experiment is unique, but all designed experiments proceed in a common manner.
The top-level flowchart shown above illustrates the basic steps that are followed during
any designed experiment.
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Conducting an experiment is rarely an activity for one person. In modern design and
production systems, it requires a team of people who collectively possess the
knowledge and understanding of a product design or process to adequately plan an
experiment. Experiments can only be successful if all aspects of the process (or
product) are considered, and this can only occur if a team is assembled that is
composed of members with subject-matter knowledge of all aspects of the process
(or product). A statistically trained person should be part of the team.

All team members are involved in forming the relevant goals and objectives. The
team also identifies the response variables, the input factors that are likely to influ-
ence the response variables, the held-constant factors that will be held at some
nominal setting during the experiment, the nuisance variables whose potential
biases need to be eliminated by appropriate experimental design procedures, and
the input factor levels that will be studied in the experiment. The more factors stud-
ied and the wider the factor ranges investigated, the greater the confidence the
team will have in generalizing the experimental results beyond the test environment.
The final step in the preparation stage that the team should consider is the running
of a trial run or set of trial runs prior to conducting the experiment.

2.2.2 Select the Experimental Design

Design selection consists of choosing a group of experimental runs that will address
the objectives. There are many types of designs. The choice of a design depends on
many issues including the experimental objectives, the ability to take precise mea-
surements, restrictions imposed by time and money, the availability of material and
personnel, the current knowledge of the product or process being studied, and the
assumptions that the team is prepared to make. It is important to choose the experi-
mental design carefully. A well-chosen design provides a wealth of information
without elaborate analysis. A statistician should be consulted before selecting a
design.

2.2.3 Conduct the Experiment

Conducting the experiment is a joint effort between the experimental design expert
and those who know the process. The process operators are ideal candidates for
performing the experiment and measuring the process output. Care should be
taken to follow the experiment procedures exactly because errors in conducting
the experiment can invalidate the results. Even worse, the team might not realize
there was an error. As a result, either the analysis would point to a false hope of
process improvement, or it would fail to reveal a potential improvement. The false
hope may be detected in confirmation runs, but the unrevealed potential improve-
ment may never be detected. It is valuable to keep an experiment log and to record
any unexpected event that occurs during the experiment.

2.2.4 Analyze the Resulits

In the analysis step the input factors and interactions (joint effects of input factors)
that have significant effects on the response variables are identified along with their
best settings. A mathematical model is developed for those input factors and
interactions that have a significant impact on the response variables. The model is
derived from the data obtained in the experiment and can be used to predict the
value of the output as a function of the levels of the input factors. For example, the
analysis of an experiment may indicate that setting the temperature at 20°C and
using material type A increases the response variable, say yield, by 20%. In fact, an
accurate model can be used to predict the output at conditions (combinations of




input factor levels) that were not even tested. In this way, the best operating condi-
tions can be discovered by running only a small fraction of the possible conditions.

2.2.5 Determine the Acceptability of the Results

Before making conclusions or assuming the model is correct, it is necessary to
check the validity of the collected data and the analysis methods. A number of
statistical procedures exist to determine the validity of the results of the experiment
and the adequacy of the model. Graphical techniques are often used to help identify
problems with the experiment data or the analysis and mathematical model. If
problems occurred during the experiment, it may be necessary to rerun some or all
of the experiment. If the data from the experiment appear to be valid, the team has
greater confidence in making conclusions based on the experiment.

2.2.6 Verify the New Processing Conditions

Assuming an acceptable model is obtained, the team can select those factors that
significantly affect the process and control them as “key process parameters.” These
factors can be assigned settings which optimize the response. Insignificant factors
may be assigned settings which are economically desirable. Once these new
processing conditions are established, they must be verified with several runs to
confirm the improvement.

2.2.7 Determine Whether Additional Experiments Are
Warranted

Each experiment leads the team closer to the “optimal” operating conditions. In this
context, “optimal” means the best value that can be predicted by the experimental
results. Sometimes further optimization is possible and economically justified.
Consequently, the team may decide to perform additional runs or use a new design
to get more specific information; they may decide to test new areas outside the
original region of experimentation, or to test new input factors; or they may decide to
look for improvements within the specifications when the process is on-line.

In other situations, additional improvements may be possible but not cost effective,
or they may be too small to be of practical significance. Moving to a new project may
result in a bigger payback than searching for additional improvements on the cur-
rent project.

2.2.8 Make Improvements Permanent

After analyzing the experimental data and identifying the improved operating condi-
tions, the key process factors or parameters (those factors that have been deter-
mined to significantly affect product quality) must be controlled at their new settings.
Control charts are often an excellent tool for monitoring process parameters and for
identifying out-of-control process conditions so that corrective action can be imme-
diately applied.

In addition, process limits must be established for each key input factor. The pro-
cess limits define regions in which the process input factors can vary without im-
pacting the product quality. If the results of an experiment indicate a new specifica-
tion different from a Boeing specification, suppliers must contact Boeing for ap-
proval before making process changes for Boeing products.
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2.2.9 The Strategy of Sequential Experimentation

At the beginning of the Design of Experiments process, there is usually insufficient
knowledge to effectively design one comprehensive experiment that enables the
team to optimize a given process or product. So, it is a better strategy for several
small experiments to be conducted sequentially, each building upon information
gathered from previous experiments. The results from one experiment may indicate
that there are other important input factors, alternative factor levels of interest, new
response variables to measure, or that there are complicated interactions between
some input factors. This information can be used to plan the next experiment.

It often takes a sequence of small experiments before the objectives are reached.
For this reason, only about 25% of the available budget should be used in the initial
experiment. This will ensure that resources will remain to develop further experi-
ments to enable the team to converge to a satisfactory conclusion.

2.3 Description of the Design of Experiments Process

In the remainder of this chapter, the steps in the Design of Experiments process as
shown in figure 2.8 will be described in more detail.

2.3.1 Preparation Steps

Conducting an experiment is rarely an activity for one person. In modern design and
production systems, a team of people collectively possesses the knowledge of a
product design or process. The expertise of all the members of the team is used in
following the steps in the Design of Experiments process described above.

The preparation activities that precede the actual running of the experiment are
critical to a successful experiment. Planning a successful experiment requires
attention to detail. Experiments fail for a number of reasons, but a major cause of
failure is poor planning and preparation. The nine preparation steps shown in figure
2.9 consist of defining the problem and the experiment objectives, identifying output
characteristics that quantify the product or process quality, brainstorming the vari-
ables likely to affect the output, selecting the values at which the input factors will be
tested, prioritizing the factors so that the most relevant ones are included in the
experiment, and possibly doing a test run prior to conducting the experiment.

At the end of this section are examples of four different forms that can be used as
guides for completing steps 1 through 9.

Step 1: Identify the Problem and Objectives of the Experiment

The need to run a designed experiment is often identified by the quality team that
establishes the required controls of D1-9000, section 2. However, management may
also identify areas of waste, poor quality, or potential gain. In either case, it is up to
the team to develop a concise statement of the problem that is specific, and empha-
sizes observable, measurable performance characteristics.

In addition to the problem statement, the team should record the objectives for the
experiment. Defining clear objectives that will guide the Design of Experiments
process is a critical step in the planning process.

The objectives are statements that explain how the goals will be attained. The
objectives will address the issues identified in the problem statement. It is important
that the objectives be agreed to by all members of the team and by all interested
parties who represent the broad areas of subject-matter knowledge that exists for




this problem and the experimental context. The objectives should relate to the
problem statement and be of practical consequence so it is clear that the experi-
ment will provide data that will support an action that addresses the issues de-
scribed in the problem statement. Furthermore, the objectives should be detailed
and specific, and describe the criteria that will be used to determine whether the
objectives have been reached.

A prioritized list of objectives that are detailed and specific, that relate to the prob-
lem statement, and to which all on the team have agreed is invaluable. The team
can refer to this list of objectives during the preparation steps and throughout the
experiment process, and it will help keep the experiment on track.

Step 2: Select the Team

Generally, when forming the experiment team, it is important to identify the specific
skills or areas of interest that are needed to represent all aspects of the experiment.

9. Consider doing a test run.

8. Select design variables to test in experiment.

7. Determine impact of factors on output variable(s).

6. Perform time and cost analysis.

5. Choose test values for input factors.

4. Brainstorm causes of variation.

3. Define output characteristic(s) (response variables).

2. Select the team and identify objective(s).

1. Identify the problem and objectives.
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Figure 2.9 Preparation Steps
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The team should include process operators, “experts” on the process, a statistician,
and other technical staff, including those who will be running the experiment.

The first task of the team is to define and agree to detailed, specific, measurable
objectives that address the problem statement. If objectives have been defined by
management in step 1, it is important that the team unanimously concur with those
objectives. When new members join the team they should also concur with the
objectives. Any changes to the objectives should be agreed to by all team members
and other interested parties to the experiment.

The guide sheet in figure 1.17.4 and figure 2.12 can be used to document steps 1
and 2.

Step 3: Define Output Characteristics (Response Variables)

After each experiment run, the values of one or more output characteristics are
recorded. Generally, the output characteristics are key characteristics, although they
may include other characteristics of interest. In any case, the output characteristics
should quantify product or process quality, and the set of output characteristics
should be sufficient and complete to enable the objectives of the experiment to be
addressed. In the experiment, these quality measures are called response vari-
ables, output variables, or simply the output. Some examples of output characteris-
tics are heat release, strength, yield, output voltage, gap, and surface finish.

When the team selects the output characteristics or response variables, they should
give consideration to how these will be measured and to the probable accuracy of
these measures. The precision of the measurement process affects the confidence
in the experimental data and in the conclusions, and can impact the number of
experimental runs required for a worthwhile experiment. The team may need to run
a gage R&R study to verify that the measurement process has adequate precision.
This gage study might indicate the necessity of installing new measurement equip-
ment or implementing new measurement procedures prior to running the experi-
ment. If the output variable is a key characteristic, the variation in the measurement
process should consume no more than one tenth of the engineering tolerance.

To obtain consistent data, measurement definitions should be established that are
as precise as possible and agreed to by all team members. The measurement
definitions should be detailed, specific, and feasible. These definitions should
specify what is to be measured, when, and by whom, and describe the procedures,
instruments, data collection plan, and other criteria to be used. The measurement
definitions should capture the output characteristic. For example, if the output
characteristic is the surface finish of the experimental product, it is important that
measurements are taken at enough locations on the part so that the surface finish
of the part is adequately characterized.

The output variables should be quantitative, or a large number of runs will be
required. Sometimes a qualitative output variable can be converted to a quantitative
output variable. For example, a pass/fail criterion is a common qualitative measure
for the plating adhesion of a titanium-coated part. A piece of tape is placed on the
coated part and then removed. The amount of coating removed determines a pass
or fail. This qualitative output variable can be converted to a quantitative output
variable by measuring the percent of coating removed from the taped area.

For a qualitative output variable like color, a subjective scale can be used. For
instance, a score of 1 to 9 could be used to represent the intensity of color. How-
ever, caution should be exercised when using subjective output measures because
subjectivity can introduce additional variation into the experiment results. One way




that the effect of this additional variation can be mitigated is to have multiple judges
independently evaluate the output and to use in the analysis the average score
given by the judges. A helpful method to increase the usefulness of subjective
scales is to have available for comparison samples of the output for each of the
possible scores. Each judge can then compare the experimental product with
baseline scored samples.

A problem can occur in the analysis of subjective scoring schemes when most of
the output values are one of a small number of scores. To avoid this situation, it is
recommended that the scoring scheme be defined so that the experimental data will
yield at least five unique scores, with no more that 30% of the observations likely to
be given the same score.

An alternative output variable to a subjective scale is to ask the judges to indepen-
dently rank each of the experimental products and to analyze the average ranks
given by the judges. This is only feasible for experiments that are not too large, and
where all of the experimental products can be simultaneously evaluated.

The guide sheet in figure 1.17.5 and figure 2.13 can be used to assist the team in
step 3.

Step 4: Brainstorm Causes of Variation

In most product design or process experiments there are many items that contribute
to variation in the output variable(s) (as defined in step 3). One of the steps in
preparing for an experiment is to identify these causes of variation.

Brainstorming is an effective way to uncover the items that contribute to variation in
the output. During brainstorming, everyone is invited to contribute ideas, and the
ideas are recorded as a list of variables. Members should be concerned with gener-
ating ideas and should not stop to explain their suggestions or question the mean-
ing of others’ ideas. The goal is to come up with as comprehensive a list of causes
of variation as possible.

After all possibilities are exhausted, members take turns clarifying ideas. Avoid
evaluating or judging ideas at this point. The purpose is to enhance understanding
and to combine like ideas where appropriate. Even if some variables are not in-
cluded in the experiment, the identification and discussion of these ideas will give
the team an increased awareness of the variables that affect the process and the
experiment results.

Some of the problem-solving tools described earlier in this document can be helpful
in the brainstorming process. Constructing a flowchart of the process (see section
1.10) will give the team a common understanding of the process, help them identify
the sources of variation in the process and indicate measurement points for the
process. The cause and effect diagram (see section 1.3) can be used to graphically
display the relationship between outputs and causes of variation and can focus the
team on the root causes of the major sources of variation. The structured tree
diagram (see section 1.4) can be used to identify causes of variation and represent
the hierarchical nature of those causes.

When the team has constructed the list of variables that affect the process, it should
then classify them as input factors, held-constant factors, or nuisance factors. The
input factors are variables in the process or product that are thought to affect the
output variable(s), and that can be changed in a controlled manner by the experi-
menter. The held-constant factors are variables that can be controlled at some fixed
target or nominal setting during the experiment. The nuisance factors are variables
that can affect the output variable(s) but that cannot be actively controlled by the
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experimenter. As the team continues to follow the preparation steps for the experi-
ment it is possible that the classification of a variable might change.

The guide sheets in figures 1.17.6, 1.17.7, and 1.17.8 can be used in this activity.

The input factors can be categorical, ordinal, or continuous. Examples of input
factors are time, temperature, drill type, drill diameter, feed rate, resin density,
chemical concentration, lubricant, supplier, fixture type, part orientation, and assem-
bly sequence.

Since the input factors will be deliberately changed in a controlled systematic
manner in the experiment, it is imperative that the input factors can be both mea-
sured and set precisely to the prescribed test levels of the experiment. Large errors
in either the measurement or setting of the input factors will affect the experimental
results and conclusions. Furthermore, it is important that the input factors can be
held constant during each experimental run.

The held-constant factors are variables that are controllable during the experiment
and whose effects are not of interest in the experiment. These factors might, or
might not, have an effect on the output variable(s). If these factors do have an effect
on an output variable and they are not held constant in the experiment, it is possible
that changes in these factors will bias the data in an unknown way, making the
experiment worthless. It is important that the team determine the nominal setting at
which these factors will be held during the experiment and that they know how the
control of these held-constant factors will be ensured, measured, and monitored.

The nuisance factors are variables that can affect the output variable(s) but that
cannot be actively controlled by the experimenter. Thus, it is not possible to hold
nuisance variables at some fixed setting for the course of the experiment. Nuisance
factors that vary during the experiment and have an effect on the output variables
can impart an unknown bias on the experimental results.

If the levels of the nuisance factors can be measured for each run of the experi-
ment, it is possible that any effect that the nuisance factors have on the output
variables(s) can be accounted for in the analysis. In this case, it is important for the
team to define the measurement procedure for the nuisance factors. Alternatively, it
may be possible for the team to define procedures for the conduct of the experiment
that will minimize the changes in the nuisance variables during the experiment.
Finally, it may be possible to use experimental design strategies such as random-
ization or blocking to reduce the effect of nuisance variables.

In some contexts there might be variables that would normally be considered
nuisance variables because they are too expensive, too difficult, or impossible to
control in the production or the end-use environment, but it may be possible to
control them at different settings during the experiment. It might then be desirable to
include these variables as input factors for the experiment since this will increase
the applicability of the experiment, and could lead to determining values of the other
input factors that minimize the variation in the output variable(s) caused by changes
in these normally uncontrollable factors. (See the discussion of robust design in
section 2.3.4.1.)

Step 5: Choose Test Values for the Input Factors

After brainstorming a list of potential causes of variation for the output variables,
and classifying those causes as input factors, held-constant factors, or nuisance
factors, the next step is to select a range over which the input factors will be tested
during the experiment, and the number of test values (also called levels) for each
factor.




For example, suppose temperature is selected as an input factor. The range to test
for a temperature effect might be from 20°C to 40°C. It may be appropriate to use
20°C and 40°C as the two test levels, or the experimenter may decide to test an-
other value as well, say 30°C. In most simple experiments, the input factors are first
tested over two levels.

The range of values for each input factor is selected from a set of possible known
values or drawn from personal experience. Sometimes the range of input factor
levels is determined by practical considerations. For example, if the humidity of a
textile spinning shed is an input factor of interest, it may be that the range at which
the plant can effectively operate is restricted to between 40% and 60% relative
humidity.

One approach to choosing the test values for the input factors is to set them so that
the expected difference in the output over the range of the test values is about the
same as the standard deviation of variation of the output during normal use (see the
Coleman & Montgomery paper referenced at the end of the chapter). It is claimed
that this is frequently a change in output that is of practical importance, and that
with an experiment of reasonable size the difference in the output due to the chang-
ing factor levels should be detected.

The important thing in choosing the range of the test levels is that the range should
be wide enough to cause a potential change in the output that is of interest and to
span the range of normal operating conditions, but narrow enough to provide useful
information.

After an appropriate range is chosen for the quantitative input factors, the number of
test values within this range is selected. The number of levels depends on personal
judgment and the type of investigation desired. In preliminary experiments, the
factors are usually run over two extreme levels to determine whether an input factor
has an effect and, if so, the direction of the effect (whether it increases or decreases
a given output). Three or more test levels may provide more information about the
output, but the design will be more complex and often more costly and time con-
suming to run.

If qualitative input factors are used, the levels are usually determined by the nature
of the problem. The team may be testing the actual effect of each of several pos-
sible qualitative conditions. When such conditions are too humerous to test exhaus-
tively, a few may be randomly selected in order to test the input factor’'s contribution
to variability in the output. An example would be using a small number of randomly
selected operators from the large number of operators that perform the process, or
a small number of randomly selected batches of raw material from a large number
of batches. Experiments of this type yield what are called “random-effect” models,
and must be analyzed differently from an experiment where it is the actual fixed
levels of a factor that are of interest. It is recommended that a professional statisti-
cian be consulted in such cases.

The guide sheet in figure 1.17.6, and figure 2.14, can be used to document the test
values for the input factors.

Step 6: Perform Time and Cost Analysis

The choice of which input factors to use in the experiment is guided in part by time
and cost. For each possible input factor, the team should estimate the time required
to change levels and the associated cost. If the exact dollar amount is difficult to
estimate, values such as low, moderate, and high can be used to indicate cost.
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Time estimates will be approximate and should take into account both changing and
stabilizing the process. After changing levels it often takes additional time for the
process to reach the new level. Before conducting each run, the process must be
stable at the new levels.

Step 7: Determine Impact on Output Variables

In addition to time and cost considerations, in choosing which input factors to use in
the experiment, the team should take into account the potential impact of each input
factor on the output variables. Team members can estimate the degree of impact for
each output variable using the scale low, moderate, and high. Figure 1.17.6 in
section 1.17, and figure 2.14, can be used in this activity. This step is largely subjec-
tive but can help ensure that the potentially most important input factors are in-
cluded in the experiment.

An important consideration that has an impact on the selection of an appropriate
experimental design is the sets of input factors that are likely to have joint (interac-
tion) effects on the output variable(s). A two-factor interaction effect exists if the
effect on the output of changing the levels of one input factor depends on the level
of a second input factor. This is illustrated in figure 2.10 and 2.11.

The left-hand table of figure 2.10 gives data for a situation where input factors A and
B do not interact; the effect of changing input factor A is about the same (20 or so)
at both levels of input factor B. This is illustrated in the left-hand diagram of figure
2.11, where the lines are virtually parallel. It should be noted that a similar diagram
is obtained if the effect of changing input factor B is calculated for the two levels of
input factor A, where the effect of input factor B is about 30 for both levels of A.

The right-hand table in figure 2.10 gives data for a situation where input factors A
and B do interact; the effect of changing input factor A is 25 at the low level of input
factor B, but is 9 at the high level of input factor B. This is illustrated in the right-hand
diagram of figure 2.11, where the lines are not parallel. Nonparallel lines in the
interaction plot are evidence of the presence of an interaction. It should be noted
that a similar diagram is obtained if the effect of changing input factor B is calcu-
lated for the two levels of input factor A, where the effect of input factor B is 31 at
the low level of input factor A, but is 15 at the high level of input factor A.

Interaction effects are present in many engineering applications. Using experimental
designs that are able to estimate them is an important goal that can lead to dra-
matic improvements in the quality of products and processes.

It can be a valuable exercise for the team members to consider which interactions
between the input factors are most likely to occur. Information on which interactions
between the input factors are most likely to occur can be used to choose an experi-
mental design that can estimate the interactions that are most likely, or at least to
ensure that these interactions do not contaminate (bias) the estimates of the main
effects of interest.

The guide sheet in figure 1.17.9, and figure 2.15 can be used to aid in the discus-
sion of potential interactions between the input factors.

Step 8: Select the Design Variables

After completing the previous steps, the team selects the input factors for the
experiment. The selected input factors are often called design variables. The design
variables represent a compromise among time, cost, and overall impact. There is no
standard number of design variables that should be included in the experiment.
However, it is important that all relevant input factors be considered.




No AxB Interaction

AxB Interaction Present

Effect of A Effect of A
High 61 80 80-61 = 19 High 61 70 70-61 =9
Factor B Factor B
Low 30 52 52-30 = 22 Low 30 55 55-30 = 25
Low High Low High
Factor A Factor A

The effect due to the change in factor A does
not depend upon the level of B.

The effect due to the change in factor A
depends upon the level of B.

Figure 2.10 Data to lllustrate Interaction Effects—

Two input factors A and B are both tested at two levels, low and high. The value of the
response variable at a particular combination of the levels of A and B is given in the
appropriate cell in the table.

No AxB Interaction

AxB Interaction Present

80| High B 80| _

ol / 70} HighB ___.

60 | 60 |- —
Response S0 Low B Response 50 | Low B
Variable 40f Variable 40f

30| 30}

20 20}

1 10}

0 ' L 0 L L
Low High Low High
Factor A Factor A

Figure 2.11 Interaction Plots of the Data in Figure 2.10.

Questions often arise when a potentially high-impact input factor is associated with
the excessive cost or time to change its levels. There are no easy answers, but keep
in mind that failure to discover all important input factors can inhibit one’s ability to
accurately proceed in optimizing the process. Generally, it is best to include those
input factors that it is anticipated will have at least moderate impact and low time
and cost requirements.

If an input factor is not selected for the experiment because its settings are difficult
to change due to time or cost, then the factor is reclassified as a held-constant
factor and, if possible, it should be held at its best level during the experiment. It will
now not be possible to determine the effect of that factor on the output variables.
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Step 9: Consider a Trial Run

At the end of the preparation steps the team should consider conducting a trial run,
or set of trial runs, prior to running the experiment. The process of conducting a trial
run, or set of runs, gives the team an opportunity to develop an experimental proce-
dure for conducting the Design of Experiments tests and for measuring the output
variable(s). From this, the team will gain insight into the time involved in changing
input factor levels, completing a test run, and measuring an output, any of which
might influence a decision on the total number of runs that are possible.

Trial runs can also reveal aspects of the preparation steps that are incomplete or
incorrect, perhaps identifying input or nuisance factors that have been overlooked, a
combination of input factor values that are infeasible, or a measurement procedure
that is impractical. Many things can be learned by just observing a trial run.

Finally, the results from the trial runs could impact the choice of experimental design
by providing an estimate of the experimental variation. This can be used to deter-
mine the number of experimental runs that are needed to detect a change in the
output variable(s) due to changing the settings of the input factors that is large
enough to be of practical importance. This is useful in the design selection step to
ensure that the number of experimental runs is not so small that the experiment will
miss important effects, and not so large that the experiment will waste resources.




Experimental Design Guide Sheet

1 Experiment title:

2. Team leader and organization:

3. Objective of the experiment:

The objective should be unbiased, specific, measurable, of practical consequence, and

yield new knowledge.

4., How results of the experiment will be used:

5. Relevant background on response and control variables:
(Include expert knowledge and experience and theoretical relationships)

6. Team selection:

Functional or process skill requirement

Team member assigned

Responsible organization

1
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For further discussion of the guide sheets in figures 2.12 through 2.15, refer to Coleman and Montgomery (1993)

“A Systematic Approach to Planning for a Designed Experiment,” Technometrics 35, pp. 1-27.

Figure 2.12 Experimental Design Guide Sheet
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Experiment Title:

Response Variable Definition

Response variable

Units of
measurement

Lower
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experimental objective
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I nput Factor Definition

List all input factors that affect the response variables and identify those that are thought to be most influential and will be systematically changed
in the experiment. Use additional sheets as necessary.

Input factor
Description

Units
of
measure-
ment

Normal
operating
range or
value

How will test settings be measured and held?
Test values Gage used and precision.
Extent of “setting variation”

Low | High

Expected impact of input variable
on each response variable:
High, Medium, Low

Response Variables
112 13|4|5|6 |78
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X'sare placed in cells for pairs of factors where interactions that affect the response variable are expected. See figures 2.10 and 2.11 for an
illustration of interactions between input factors.

I nteractions Table for Controlled Input Factors

Input
factor

Factor 2

Factor 3

Factor 4

Factor 5

Factor 6

Factor 7

Factor 8

Factor 9

Factor 10

Factor 11

Factor 12

Factor 1

Factor 2

Factor 3

Factor 4

Factor 5

Factor 6

Factor 7

Factor 8

Factor 9

Factor 10

Factor 11




2.3.2 Design Selection

After the design variables and their test values have been identified, the runs for the
experiment are selected. A run is a single combination of test values. For example,
if an experiment is to be conducted with time set at 30 minutes and 60 minutes, and
temperature set at 85°C and 115°C, a run might consist of operating the process at
time = 30 minutes and temperature = 85°C. An experiment design is the collection
of runs that make up an experiment. An experiment design for the above example
might consist of the runs shown in figure 2.16, where yield is the response variable.

Temperature’ OC
30 85

y
2 60 85
3 30 115
4 60 115

Figure 2.16 A Simple Two-Factor Experiment

In this simple experiment, it might be convenient to test all four possible combina-
tions of the test values. However, when there are many design variables, it may not
be practical to perform all possible runs. Instead, the team will have to select a
subset of the possible runs.

Design selection consists of choosing a subset of runs that most efficiently provides
the desired information. When choosing a specific design, there are several things
to consider (see figure 2.17). First, the experiment objectives and the preparation
steps are used as a guideline for choosing an appropriate design. Second, both the
team and the statistician should recognize the constraints on the experiment,
determine the number of runs required to get the desired information, and explore
the possible experiment outcomes and strategy.

2.3.2.1 Recognize the constraints

Experiments are subject to a variety of constraints that will influence the choice of a
design (see figure 2.18). Some of the most common constraints are discussed
below.

(i) Economic constraints

The experiment is conducted within the constraints of the available budget. Re-
sources are required to set up, to run the experiment, and to take the measure-
ments. Because of the levels chosen for the input factors it might be necessary to
run the experiment in a laboratory, or to take the production process off-line. The
latter is preferable but usually more expensive. In some cases, it may be necessary
to construct or purchase special apparatus for running the experiment or for mea-
suring the output of each experimental run.

(i) Time constraints

It takes time to set up the experiment, complete each run, and measure the output.
The length of time for each run depends, in part, on the number of design variables
and the time required to change their levels. In a production environment, it usually
is not possible to keep machines off-line for an extended period. It may be neces-
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Recognize
the
constraints

The amount of available time and the available budget are two common
constraints on the experiment. There may be process constraints that
influence the order of runs and the choice of test values, or that even
make some test value combinations impossible.

Choose
the number
of runs

The number of distinct runs must be determined, as well as the number of
duplicate runs. The number of distinct runs will determine the type and
amount of information that can be drawn from an experiment. The
number of duplicate runs will determine how well one can detect the real
effects of changing the input factors.

Identify
experimental
strategy

Select the
design

In a sequential approach to experimentation, each experiment supple-
ments the information gained from the previous experiments. Thinking
through the experimental strategy and the possible outcomes will help the
team determine an appropriate design.

The design consists of the number of experimental runs, the order in
which the runs are to be made, and the test value of each design variable
at each run. There are many different types of designs, each with
characteristic strengths and drawbacks.

Prepare

Select
design

Analyze

Conduct
-> results

experiment

—>

Inadequate
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improvements

Optimize new
parameters

Implement 4
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fI_Z)eSIQn . Errors in
refinements execution
needed

Results
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?
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existing design
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Figure 2.17 Design Selection—

An experimental design is a strategic arrangement of test values for each design variable.
The number of runs, the combination of test values, and the conditions under which the
testing takes place are determined by the process constraints, the available budget, and
the experiment objectives. The selected design is chosen to provide the best information

using the fewest possible runs.




sary to complete the experiment within a narrow time window when the required
equipment and people are available. To complete the experiment within a reason-
able time frame, the necessary resources (e.g., people and machines) should be
allocated before starting the experiment.

If the experiment is conducted over a long period of time, you run the risk of it being
interrupted for some unexpected reason or for unknown sources of variation being
introduced into the experiment. As a result, the interpretation of results will be much
more difficult and could lead to invalid or incorrect conclusions. Therefore it is
advisable to complete the experimental runs in as short a time as feasible.

(iii) Batch effects

Batch processing takes place whenever there is a distinct change in materials,
schedules, or processing within the context of a single experiment. Because the
output(s) may be affected by the “batches,” the batches are nuisance factors and
the design must make provision for them.

For example, suppose an experiment was run using 16 runs and two drums of
material. The team completes eight runs using one drum of material and eight runs
using another drum of material. If one design variable (say, temperature) was set at
high for the first eight runs and set at low for the second eight runs, then any differ-
ences in the output between temperature levels may actually be a result of differ-
ences between drums of material. It is impossible to separate the effect of tempera-
ture from the effect of the two drums of material. In this situation, an experimental
design strategy called “blocking” should be used so that the real differences be-
tween temperature levels will not be contaminated with, and biased by, differences
caused by the different drums of material.

(iv) Process constraints

Most experimental designs assume that it is feasible to test any combination of the
test values for the design variables. But sometimes it is not possible to test the
design variables at certain combinations of the levels. For example, suppose two
design variables in an autoclave experiment are time and temperature. Although
many combinations of time and temperature are feasible, an autoclave that is run at
a high temperature for a long period of time may destroy the product, resulting in no
data for the outputs.

Another type of process constraint occurs when the value of one design variable
cannot be set independently of another. For example, in an experiment to study the
effect of changing temperature on the strength of composite panels made with two
different resin systems, it may be necessary to define different low and high settings
for temperature for the two resins because they are cured at different temperatures.

Finally, another type of process constraint is a combination of the test values for the
design variables that are not relevant because the combinations of test values is a
long way from a region in which the process would be operated.

There are special designs for these kinds of restrictions. Consultation from a profes-
sional statistician is recommended.

(v) Randomization restrictions

Most experimental designs require the experimental runs to be performed in a
randomized order (that is, not performed in a systematic order). However, there may
be times when it is not possible to completely randomize the experimental run
order. For example, if changing the temperature in an anodize tank is extremely
difficult, time consuming, or costly, the experimenter may prefer to restrict the
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Figure 2.18 Recognize the Constraints.

The choice of design will be influenced by a variety of constraints. Some of the most
common constraints fall into the categories shown above. When selecting a design, it is
necessary to take into account the particular constraints and circumstances of each

experiment.

randomization of the temperature variable. This is accomplished by not randomly
changing the temperature levels on a run-by-run basis, but still randomly changing
the levels of the other design variables for groups of runs where the temperature is

held constant.

If complete randomization of runs is not possible, split-plot designs

and other blocking designs (not covered in this text) may be appropriate. A profes-




sional statistician should be consulted if it is desirable to restrict the randomization
of the run order.

(vi) Types of design variables

Temperatures, chemical compositions, pressures, and times are all examples of
design variables that can be set and held to fixed, predefined values. However, this
is not the case for all design variables. Suppose many operators work in a large
assembly operation, and the operators’ skill greatly determines the quality of the
output. The impact of the operators should be determined and included in the
design. Unfortunately, it is impossible to pick fixed operator levels. However, some
operators can be selected randomly and included in the design to represent the
variation caused by the entire group. This leads to what is called a random-effects
model. The analysis is different from a fixed-effects model, where the focus is on the
actual levels of the design variables, and a statistician should be consulted in this
situation.

In some experiments, certain factors may be known to have a significant impact on
the output but cannot be set to values specified by the experiment team. For ex-
ample, suppose the alloys in a metal affect the output characteristic, and although
the team can measure the constituents of a certain melt, they cannot control the
composition of the raw material. In this context, the raw material composition is a
nuisance factor. If nuisance factors can be measured they are called covariates.
Data on covariates can be used in the analysis of the experiment so that the effect
of the design variables can be estimated after adjusting for the effect of the
covariates. It is important for the team to clearly define the measurement procedure
for any covariates. A statistician should be consulted for the analysis of this type of
experiment.

2.3.2.2 Choose the number of runs

After the team has considered time and budget constraints, they must determine
the most efficient number of runs to include in the experiment. In experiments with
many input variables, it is not practical to test all possible combinations of test
values. Instead, a particular subset of the possible runs is selected.

First, the team must decide on the number of distinct runs to include in the experi-
ment. A run is distinct if it has a different combination of test values than all the
other runs. Second, the team must decide if the runs will be duplicated. When a set
of runs is conducted more than once, the design is said to be replicated. The num-
ber of distinct runs in the experiment determines the design resolution. The number
of replications determines the sensitivity of the experiment to pick out significant
effects (called effect sensitivity). These terms are discussed below.

(i) Design resolution

Design resolution determines the type and amount of information about the design
variables that can be drawn from an experiment. In an experiment the interest is
usually focused on the main effects of the input factors and possibly the two-factor
interactions (joint effect of two input factors). For an illustration of interaction effects
between two factors see figure 2.10 and figure 2.11. There might also be interac-
tions involving three or more factors that affect the output variables, although in
practice the existence of these higher-order interactions is a rarer occurrence.

A full factorial design, because it consists of experimental runs with all possible
combinations of the input factor levels, will yield data that enable the estimation of
all of the main effects and all interactions (of all possible orders). In contrast, a
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Figure 2.19 Four-Run Fractional Factorial Design

1 + - -

2 - - +
3 - + -
4 + + +

Figure 2.20 Interaction Columns for Design in Figure 2.19

fractional factorial design uses only a subset of the runs of the full factorial design
and so will not yield estimates of all of the main effects and all interactions (of all
possible orders). With a fractional factorial design the main effects and interactions
cannot be separately estimated. Instead the main effects and interactions are linked
together in groups such that within a group the estimates are contaminated (the
technical term is confounded) by the other effects in that group.

To illustrate this, consider the four-run fractional factorial design with factors labeled
A, B, and C, given in figure 2.19. In this figure, the low and high settings of the
factors are denoted by minus and plus signs. In this design, the main effect of A is
calculated by taking the average output of the runs with A at the plus setting (runs 2
and 4) and subtracting the average output of the runs with A at the minus setting
(runs 1 and 3). Similarly,

Main effect of B = (average output for runs 3 and 4) -
(average output for runs 1 and 2)

Main effect of C = (average output for runs 1 and 4) -
(average output for runs 2 and 3)

The interaction (joint) effect of two factors is calculated by forming the product of the
columns for those two factors, and then taking the average output of the runs with a
plus setting in the interaction column and subtracting the average output of the runs
with a minus setting in the interaction column. The interaction columns are shown in
figure 2.20. Thus, for example, the interaction of A and B is calculated as the aver-
age output of the runs with AxB at the plus setting (runs 1 and 4) and subtracting
the average output of the runs with AxB at the minus setting (runs 2 and 3). Note
that this is identical to the calculation for the main effect of C.

When the average output for runs 1 and 4 is subtracted by the average output for
runs 2 and 3, what is being estimated is actually the (main effect of C) + (interaction
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Figure 2.21 Summary of Confounding of Effects and Interactions
for Resolution 1ll, IV, and V Designs

effect of A and B). The main effect of C and the interaction effect of A and B cannot
be separately estimated. The main effect of C is contaminated by (or confounded
with) the interaction effect of A and B. The notation that is used to describe this
confounding is C + AxB, or C + AB. Thus, if a team uses the design in figure 2.19
they can only deduce the main effect of C if they are prepared to assume that A and
B do not interact.

A comparison of the columns in figures 2.19 and 2.20 reveals that the column for
the main effect of A is identical to the column for the interaction of BxC, the column
for the main effect of B is identical to the column for the interaction of AXC, and the
column for the main effect of C is identical to the column for the interaction of AxB.
Thus, for the design in figure 2.19, the confounding can be summarized as:

A+BC
B+AC
C+AB

So, a team can only deduce the main effect of A if they are prepared to assume that
B and C do not interact, they can only deduce the main effect of B if they are pre-
pared to assume that A and C do not interact, and they can only deduce the main
effect of C if they are prepared to assume that A and B do not interact.

There is contamination (or confounding) of main effects and interactions in all
fractional factorial designs, so the estimation of any main effect or interaction will
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Figure 2.22 Design Resolution for Commonly Used Two-Level Fractional
Factorial Designs

depend on assuming that certain other interactions do not exist (or can be regarded
as negligible).

Thus, although fractional factorial designs require fewer runs than full factorial
designs, the analysis is more complex because of the confounding of main effects
and interactions in groups. The feasibility of using fractional factorial designs arises
when the experimental runs are selected so that all of the main effects and interac-
tions that are likely to occur belong in different groups. Then the main effects and
interactions of interest are mutually uncontaminated by one another and so can be
separately estimated, and their individual effects can be identified under the as-
sumption that the other interactions are negligible.

Design resolution, usually denoted by Roman numerals, indicates which types of
effects are confounded, in groups with which other types of effects. An informal
definition of design resolution is that an experimental design is of resolution R if all
pairs of effects containing fewer than R factors in total are unconfounded and so
can be separately estimated.

Using this informal definition of design resolution we can state that a resolution Il
design is an experimental design in which the main (single) effects are not con-
founded with other main (single) effects but may be confounded with two-factor and
higher-order interactions. A resolution IV design is an experimental design in which
the main effects are not confounded with any main effects or two-factor interactions
but may be confounded with three-factor interactions, and in which two-factor
interactions may be confounded with other two-factor interactions. A resolution V
experimental design has main effects and two-factor interactions unconfounded with
one another, but the main effects may be confounded with four-factor interactions,
and two-factor interactions may be confounded with three-factor interactions. Design
resolution is summarized in figure 2.21.

Low-resolution designs have the advantage of being able to test a large number of
input factors while requiring few runs. High-resolution designs require more runs,
but enable a better understanding of how the input factors affect the output vari-
ables by identifying the interactions among the input factors.

In a sequential approach to experimentation, low-resolution designs are usually
conducted first to identify significant input factors. Then runs can be added to the
design to create a high-resolution design that can investigate the possibility of
interactions among those factors. If there are only a few input factors to be studied,
it might be feasible to select a high-resolution design for the initial experiment.
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Figure 2.23 Choose the Number of Runs—

If complex relationships are suspected between process inputs and outputs, a high-
resolution design is desirable. Generally, a high-resolution design allows the team to better
understand how the design variables influence the output characteristics. To increase the

design resolution, more unique sets of runs (combinations) need to be added to the
experiment. If the output measurements are imprecise, owing to inconsistent experimental
conditions or limitations in the test equipment or gages, then the effect sensitivity must be
increased. This is accomplished by running the set of runs more than once. Executing the

same set of runs more than once is called replication.

Figure 2.22 summarizes the most commonly used two-level fractional factorial
designs. Across the horizontal axis is the number of input factors, and along the
vertical axis is the number of experimental runs (for a single replicate). The body of
the table gives the maximum resolution for the fractional factorial design con-
structed with the indicated number of input factors and experimental runs.

For example, a fractional factorial design for six input factors in 16 runs will be a
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resolution IV design, implying that the main effects are not confounded with any
main effects or two-factor interactions but can be confounded with three-factor
interactions, and that two-factor interactions can be confounded with other two-
factor interactions. To ensure that all two-factor interactions are unconfounded by
other two-factor interactions requires a design of at least resolution V. This can be
accomplished by either reducing the number of factors to five or increasing the
number of runs to 32.

(i) Effect sensitivity

Effect sensitivity determines how precisely output variation caused by changing the
test settings of the design variables can be distinguished from output variation
caused by inherent random variation from the experiment and the measurement
process. Random variation occurs in every experiment because it is impossible to
obtain exactly the same output values from multiple experimental runs made at the
same settings of the design variables. Either the measurement equipment is slightly
off, the measurement procedure has changed slightly, the experiment conditions
have changed, there is some error in setting the levels of the design variables, or
some unknown uncontrolled factor has changed.

If each distinct combination is run only once, there is no way to be sure about the
amount of inherent random variation in the output measures. This can cause com-
plications in the analysis stage. This is because a design variable is considered to
have an effect on the output variable if the change seen in the output variable when
changing the design variable is larger than could be expected due to random
variation in the output measures.

It is a good idea to replicate each distinct run at least once to be able to measure
the random variation from the experiment and the measurement process. Replica-
tion also gives a more precise estimate of the average output at each setting of the
design variables. Replication allows the team to identify the design variables that
affect the output values and to have greater confidence in the conclusions drawn
from the experiment.

Because there are expenses associated with each run, the team will have to decide
if the cost of additional runs is justified by the benefits of gaining more specific
information on the design variables by increasing the design resolution, or getting
more precise information on the effect of the design variables and the random
variation by increasing the effect sensitivity (see figure 2.23).

2.3.2.3 Identify the experimental strategy

Before running the experiment, some thought should be given to the current knowl-
edge of the process or product, to the possible experiment outcomes, and to the
likely follow-on strategy. Thinking through the current knowledge and possible
outcomes will help the team choose an efficient design. In addition, identifying
possible follow-on experiments will cause the team to acknowledge that there might
need to be further experimentation, and to plan for the required resources (see
figure 2.24).

Many times the experiment will not answer all of the team’s questions. There is a
possibility that the experiment may fail because the team has overlooked something
during the planning phase: a key variable may not be included, an important nui-
sance variable may be overlooked, or poor test values may be used for one or more
design variables.
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Figure 2.24 Identify the experimental strategy.
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If the team has a limited understanding of the process or product, a good strategy is
to start with a low-resolution design. With the results from that experiment, the
insignificant factors can be discarded, and further study can be performed on those
design variables that have been identified as significant. This subsequent testing
might use different test values, or measure additional output variables. A low-
resolution experimental design that includes a large number of factors and is used
to discriminate between significant and insignificant factors is called a screening
experiment.

If the team is relatively sure of the important design variables, they may decide to
run a high-resolution design to better investigate main effects and higher-order
interactions between design variables. There are many different designs that may
uncover these kinds of complex relationships. If the team has performed an initial
screening experiment, using a low-resolution design, it may be possible to add runs
to the existing design to gain more specific information about the interactions or
nonlinear effects of the design variables.

After the team has completed a series of experiments, they usually will find new and
better operating conditions. But there are other situations that may occur. The team
may find that only a few design variables significantly impact the output, or that the
best operating conditions appear to be outside the region of the first experiments.
Additional improvements may be possible using Response Surface Methods or
Evolutionary Operation. These are statistical techniques that allow the team to
proceed toward optimizing a process or product.

2.3.2.4 Select the design

There are many different types of standard designs. Some are statistically complex,
others are less sophisticated and more widely applied. Some common designs are
full and fractional factorial designs, split-plot designs, central composite designs,
Latin square designs, and Plackett-Burman designs. Each has characteristic
strengths and weaknesses, and each is appropriate for particular situations. The
references at the end of this chapter give a detailed discussion of some of these
designs.

There is often no easy way to pick the best design. Each experiment should be
evaluated in terms of the process under study. The following tables list some com-
mon situations and possible designs. Teams should select a design appropriate for
their particular application, and not feel limited to the designs listed here. A qualified
statistician can help choose a design that takes into account the experiment objec-
tives, experiment constraints, current knowledge, desired information on the product
design or process, economic efficiency, and statistical principles.

In many experimental design processes, selection of the experimental design is an
iterative process that occurs as the team considers the time and cost involved in
conducting a particular design, and the expected data that the design will yield. The
team should not be too eager to finalize a design choice, but should be prepared to
evaluate several alternative designs and to make the required trade-offs between
the cost of running alternative designs and the information they will yield.

At this stage, the team might need to revisit some of the preparation steps; for
example, to change the number of input factors or the number of factor levels to see
how that affects the selection of the experimental design. It may be possible, for
example, that an additional input factor can be included in the experiment without
increasing the number of runs in the design or severely inhibiting the information
that the experiment will yield.




Design Selection

(1 of 3)

Situation

Design

Characteristics

. First or early investigation into a
process, with minimal knowledge
of the underlying process. Many
sources of variability. Quantitative
and/or qualitative variables
present. Possible to test all
combinations of test values
across all variables. The
experimental runs can be
executed in a random sequence.
Factors not included in the
experiment can be held at a fixed
value. Individual runs are
expensive, or time consuming.

Resolution llI,
two-level
fractional
factorial design

The average impact of each input factor (@ main
effect) can be estimated. If the input factors affect
the output jointly (interactions), they cannot be
distinguished from the main effects without
making further tests, and so will bias estimates of
the main effects. Nonlinear effects of the inputs on
the output cannot be tested. Very useful first step
in an experiment. When there are many input
factors this design is commonly used to screen
out nonsignificant inputs factors. Can be used as
a basis for further experiments that (1) explore the
direction of most rapid improvement; (2) combine
the original experiment with its mirror image
(foldover) to remove the confounding in the
estimates of main effects from the presence of
interactions; (3) add center points or star points to
study nonlinear effects.

. Interactions between input factors
likely, but actual interactions
unknown. Conditions are the
same as case 1, but runs are not
as expensive, which permits
more testing.

Resolution IV or
V, two-level
fractional
factorial design

Resolution IV designs allow estimates of main
effects to be separated from confounding due to
the presence of two-factor interactions. The
interactions are linked together in small groups.
Analysis may pinpoint groups of interactions, but
not individual interactions that have important
effects on the output. Resolution V designs permit
separate estimates of individual main effects and
all two-factor interactions. Nonlinear effects of the
inputs on the outputs cannot be tested.

Figure 2.25 Design Selections

. Very few variables need to be Full factorial Main effects and all interactions to all levels of
tested. Complex interactions are design complexity can be estimated. The number of runs
likely, possibly involving three or grows exponentially. Generally, only two or three
more variables in a joint manner. test levels per variable are used. More than four or
All other conditions of case 1 are five design variables become prohibitively
relevant. expensive and time consuming.

. All conditions apply for the full Blocked factorial Experimental runs may be divided into predefined
and fractional factorial model design, any groups using a blocking strategy. Blocking
except that material, time, or resolution strategies separate the variability caused by block
other limitations force the differences from the variability caused by input
experiment to be run in blocks. A factors, and therefore permit more precise
group of test runs may be estimates of the effects of the input factors.
conducted randomly within a
block, but the blocks are run in
sequence.
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Design Selection

(2 of 3)

Situation

Design

Characteristics

5. A factorial or fractional factorial
experiment is selected. However,
limitations in measurement
devices, presence of nuisance
variables, or inability to precisely
achieve the test levels generates
inconsistencies in the output for
identical run conditions.

Replicated factorial or
fractional factorial
design

Each run is replicated multiple times. Typically, no
more than two or three extra tests are made per run.
The same number of replicates are performed per
design run. All test runs are made in random order
within the blocks if blocks exist. Replication
increases the precision of the estimates of the effects
of the design variables on the output. It also enables
the experiment repeatabiblity to be measured.

6. Replication is needed to measure
repeatability, but full replication is
economically infeasible.

-and/or-
It is suspected that some of the
input variables have a nonlinear
impact on the output variables. All
input variables are quantitative.

Two-level factorial or
fractional factorial
design with multiple
center points

The midpoint of the low and high test values for each
input variable is used as a new run condition called
the center point. Replicating only this point provides
some basis for determining experiment repeatability.
It is assumed that this repeatability is uniform
throughout the entire experimental region. Center
points also permit the detection of nonlinear sources
of variation but, alone, cannot pinpoint which of the
design variables has a nonlinear effect.

7. Previous experiments have
isolated an optimal region.
Nonlinear sources of variation
exist. Input factors that have
significant effects on the output
variables have been identified. No
fractional factorial experiment has
been run in the optimal region.

Central composite
design (CCD)

Combining the two-level resolution V fractional
factorial design with center points and star points
produces a design that can estimate main effects,
two-factor interactions, and nonlinear effects of the
inputs. Generally, CCDs require five distinct settings
of each input factor. Restricted to quantitative input
factors only.

8. Same conditions as case 7, but a
suitable fractional factorial exists
within the region of interest.

Star and center points
combined with
existing fractional
factorial design to
form an orthogonally
blocked central
composite design

The same effects and interactions are estimated as in
case 7, with very little loss of information. The benefit
lies in making use of the results from an existing
experiment, thereby reducing the cost of the testing.

9. Nonlinear effects of variables are

suspected. Five distinct values per

variable cannot be achieved.

Three-level full or
fractional factorial
design, Box-Behnken
design, or face-
centered central

Complicated relationships exist between the
interactions for three-level fractional factorial designs.
Box-Behnken and face-centered central composite
designs use three test levels for each variable to
estimate all main effects and two-factor interactions

composite design and nonlinear effects of the inputs. The Box-
Behnken design is good for a spherical experimental
region; the face-centered CCD is good for a cuboidal
experimental region.
I
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Figure 2.26 Design Selections




Design Selection

3 of 3)

Situation

Design

Characteristics

10.Randomization restrictions exist

on one or more design variables
that force nonrandom structure in
the run order.

Split-plot designs

Useful when physical or time restrictions
prevent full randomization of the design
variables. Generally, only one or two input
factors are restricted. Statistical consultation is
recommended before proceeding.

11.The values or interpretation of a

given input variable depend
directly on the values of another
input variable. This forces a
hierarchy or nesting of the input
variables.

Hierarchical or
nested design

If the set of levels of an input factors can be
assigned different values for each unique level
of a second input, then a hierarchical
relationship exists. This kind of nesting is
generally a function of only a few factors that
are part of a larger experiment containing
factorial-type variables.

12.Some or all of the input factors do

not take on fixed values. Instead,
the levels can be viewed as a
random selection from a large
number of possible settings. The
effect of the input factor taking on
different values may affect the
output.

Random effects
model

The main effects and interactions of the input
factors cannot be estimated in the usual
manner. Rather, the experimental analysis
attempts to estimate the effect of the variability
due to the random design variable on the total
variability of the output.

13.Experimental runs are very

expensive. The smallest available
fractional factorial cannot be run
because of expense. No
interactions are present or they
can all be safely ignored.

Plackett-Burman

Two-level designs are available in multiples of
four rather than powers of two. Main effects
may be estimated independently of each other.
Interactions are partially contaminated with
each main effect.

14.Less common conditions result in

specialized designs, that should
be done under the guidance of a
statistical specialist. Conditions
include situations where all input
factors cannot be accommodated
in one block, more blocks are
required than are practical, factor
levels are applied in sequence to
all experimental units, or levels of
factors are percentages that are
constrained to sum to 100%.

Balanced
incomplete-block
designs

Partially balanced
incomplete-block
designs

Latin, Youden, or
Greco-Latin square
designs

Statistical consultation recommended.

Crossover designs
Mixture designs
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Figure 2.27 Design Selections
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2.3.3 Conduct the Experiment

Properly conducting the experiment is crucial to the integrity of the data and the
validity of the analysis (see figure 2.28). It is important that the team clearly identify
the roles and responsibilities that each member will have in the conduct of the
experiment so that no assumptions are made as to who is doing what and when.

It may be tempting to delegate the data gathering to factory inspectors or machine
operators. Although they are needed to operate the equipment and testing appara-
tus, at least one person familiar with statistical Design of Experiments should be
present during the experiment. When an unexpected event occurs, an immediate
decision may have to be made about the best way to proceed with the remaining
runs. Such conditions may go unnoticed by someone who is not familiar with Design
of Experiments theory.

Before starting the experiment, the test matrix (list of runs) is put into a random
order. Randomization of the run order provides some insurace against the effect of
nuisance variables that might bias the experimental results. Randomization can be
done by simply writing the number of each run on a slip of paper, mixing them in a
container, and pulling out the slips of paper one at a time. The order in which they
are pulled from the container is the order in which they should be completed. Most
computer programs do this automatically with a random-number generator. “Run”
order refers to the randomized order, and “standard” order refers to the original
order.

The second step in conducting the experiment is to coordinate the necessary
resources. All material, personnel, equipment, parts, and measurement devices
must be available and ready to use before the first test is conducted. After the
resources have been assembled, the experiment should be completed promptly
and without interruption. Otherwise, the results may be influenced by changes that
occur in the experiment environment over time that will bias the data in unknown
ways.

Next, the first test run is set up by changing the design variables to the settings
defined in the first row of the randomized test matrix. The run is conducted after the
process has stabilized at these levels. Then the output is measured and recorded.
Each time the process settings are changed, the process should be allowed to
stabilize before the next run is conducted.

The test conditions and experiment environment should be carefully monitored
while running the experiment. The exact values of the design variables should be
recorded because they are sometimes different from the intended test values. In
addition, the environmental conditions, the values of any uncontrolled nuisance
variables and covariates, or any unusual activity should be noted in a journal or log
book. These observations are important for interpreting the results of the experi-
ment and may help account for variation that is unexplained by the design variables.
This will lead to more precise estimates of the effect of the design variables.

Measurements and observations are recorded for each run. After all runs are
completed and the appropriate information is documented, the data are ready for
analysis.

2.3.4 Analyze the Resulits

The primary objectives of the analysis step are to (1) estimate the impact of the
design variables, (2) identify the significant design variables, (3) construct a predic-
tion model for each output variable that approximates the relationship between the




@ﬂﬂflﬂﬂ

Randomize .
Coordinate Setup |
the test p resources pr— test run

matrix

. Log inputs
Stabilize ! ’ Record test
process > Covariates | conditions
and outputs

;_I

No

Yes

All runs
complete
?

Conduct the
next run

Select Conduct Analyze
Prepare design experiment results

Inadequate " faesn'qgnnt Errors in
preparation er:eee dee q S execution
Results
acceptable

?

Optimize new
parameters

Additional

experiments
?

Add runs to
existing design

Verify new

== processing

conditions

Implement
improvements 4

Figure 2.28 Conduct the Experiment.

The order of the runs in the test matrix is randomized prior to the first test. The
experiment should be run over the shortest time period possible. Otherwise, the
results may be complicated by unknown changes in the experiment environment that
occur over time. The actual input values, covariates, the outputs, and any
unexpected activity are recorded for each run.
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Figure 2.29 Analyze the Results.

In the analysis step, the significant design variables and interactions are identified, a
mathematical model is developed that approximates the relationship between the process
inputs and each output characteristic, and graphical methods are used to check for
anomalies in the data and to check the validity of the analysis.

design variables and the output variable, (4) determine which process settings
produce the best output, and (5) check the validity of the data and analysis (see
figure 2.29).

After completing the experiment, the team needs to determine the magnitude of the
effect of each design variable on the output variable(s). Some changes in the design
variables may increase the output, some may decrease the output, and some may
have no effect whatsoever. The change in output that can be attributed to the
change in levels of a single design variable is called the main effect of the design
variable. A graph called a main effect plot can be used to show the magnitude and
direction of the effect of each design variable (that is, the size of the effect and
whether it increases or decreases the value of the output variable).

In a main effects plot for a two-level design variable, a line is drawn between the
average output value at the first level of the design variable and the average output
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Figure 2.30 Main Effect Plot—
For design variables with two levels, the main effect of the design variable is the average
change in output as the design variable is changed between the two levels. The slope of
the line indicates the magnitude of the effect. The steeper the slope, the larger the effect.

value at the second level of the design variable. The difference between the two
averages is called the main effect of the design variable. For a quantitative design
variable, the slope of the line measures the average change in output per unit
change in the design variable. For instance, if the design variable was temperature
in °F, the output was time in minutes, and the slope was 3, then for each 1°F in-
crease in temperature, time increases by 3 minutes. The steeper the slope, the
larger the change in the output for each unit change in the design variable (see
figure 2.30).

Next, the team must determine how much of the output variation is truly a result of
changing the design variables and how much can be explained by experimental
error. Error in this statistical sense does not imply a procedural discrepancy. In-
stead, it indicates an amount of inherent random variation that one would expect
between tests that were run at identical fixed levels of the design variables. Sources
of experimental error may include precision of test gages, operator skill, condition of
equipment, purity of materials, calibration of test equipment, unknown changes in
the experiment environment, or nuisance factors. The statistical analysis will deter-
mine if the effect of each design variable is significant or whether the effect cannot
be distinguished from experimental error. “Significant” implies that the change in the
output due to the change in the design variable is greater than can be explained by
the mere chance occurrence of the random events that cause experimental error.

There are statistical techniques that can be used to identify the significant design
variables in an experiment. Analysis of variance (ANOVA) is one commonly used
method. Some of the references at the end of this chapter give a detailed discus-
sion of ANOVA and other analysis methods.

The ANOVA methodology identifies the amount of variation explained by each
design variable (and each interaction) and the amount explained by experimental
error. A statistical ratio called an F statistic is calculated and is used to test whether
the change in the output for the different settings of the design variable (or interac-
tion) could be the result of experimental error. If the probability that the change in
the output was caused by inherent random variation (error) is sufficiently small, the
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Figure 2.31 Identifying Significant Factors—

Statistical significance is determined by comparing the difference in the mean output at
the two design variable levels against variation due to experimental error (inherent random
variation). For example, the effect shown in figure 2.30 may be real and nonrandom, or it
could be a result of measurement error or some other sources of variation. The effect
(change in output from level 1 to level 2) is compared to the inconsistency in the measures.
Only variables that change the output beyond what can be explained by inherent random
variation are considered statistically significant.

design variable or interaction is considered significant. If there is a reasonable
likelihood that the changes in the output variable could be due to random experi-
mental error, then the effect of the design variable or interaction is considered
nonsignificant. The insignificant variables can be discarded from further consider-
ation, and any follow-on experiments can focus on the significant factors. (A
statistician’s assistance may be needed for constructing and interpreting the
ANOVA.)

It should be noted that a design variable can be statistically significant without being
practically important. This would occur if the effect sensitivity in the experiment was
high so that main effects and interactions are estimated very precisely. Although a
design variable may have a distinct and significant effect on the process output, the
cost of controlling it may outweigh any benefits. For example, a manufacturer may
determine that minor differences in alloy affect the strength of a product but the
difference in strength is too small to warrant the cost of closely controlling the
uniformity of the metal. Therefore, each significant design variable should also be
evaluated in terms of practical importance.

After the significant factors are identified, the “best” operating levels (parameter
settings) are determined. “Best” refers to the value that comes closest to most
consistently meeting the experimental objective (that is, minimum, maximum, or
target output). For example, suppose an experiment was run with three design
variables (A, B, and C) and the goal was to maximize yield. Figure 2.32 shows the
experimental runs where the high and low values for each design variable are
represented by plus and minus signs. The columns labeled Yield (1) and Yield (2)
give two alternative sets of results from this experiment.




The simplest (but not ideal) way to determine the “best” parameter settings is to
look at the yield column and select the value that is closest to satisfying the experi-
ment goal. In the example, the output in run number 3 is closest to satisfying the
goal of maximizing yield for both sets of results.

However, there are dangers with this approach. With a larger experiment with more
design variables there will be many combinations of the design variables that were
not tested and it is possible that one of these untested combinations would give an
improvement over the best output seen in the test. Furthermore, this approach
might result in implementing expensive controls to ensure particular values for
design parameters that in actuality have no effect on the output. These two dangers
are illustrated with the two sets of results in figure 2.32.

Run Input Factors Responses
number A =] C Yield (1) Yield (2)
1 - - + 6 7
2 + - - 16 15
3 - + - 19 20
4 + + + 13 12

Figure 2.32 Results from a Simple Designed Experiment

For both sets of results, Yield (1) and Yield (2), the simplistic approach would indi-
cate that the best setting of the input factors is run number 3. So the conclusion
would be that using (A,B,C) = (-, +, -) is the best setting. The first danger given
above is illustrated with the Yield(1) results, where an analysis of the main effects
would show that the setting of (+, +, -), a setting not tested in the experiment, is
predicted to give a response of 21, higher than any response observed in the
designed experiment. The second danger given above is illustrated with the Yield(2)
results, where the calculation of the main effects would indicate that input factor A
has no effect on Yield(2) and so trying to hold A at the low setting defined by run
number 3 might add unnecessary expense to the process with no improvement in
yield.

A better approach than the simplistic approach of choosing the run that is closest to
the experimental objective is to use the experimental data to build a model that
enables predictions of the output to be obtained for design variable combinations
that were not tested. This model would be developed using the significant design
variables. The insignificant factors would be set based on cost, convenience, tradi-
tion, or the settings that produce the most consistent output.

The model is a mathematical formula that predicts the process output in terms of
the input values. The formula is derived from the experimental data. By plugging test
value combinations (including those that were not run) into the formula, we can get
an estimate of the output value that should occur. We can use the information on
predicted values to determine the “best” parameter settings.

Constructing a mathematical model of the output variables is particularly helpful
when these are multiple output variables and the experimental objective is to deter-
mine the “best” parameter settings to satisfy goals (minimize, maximize, or on
target) for the set of output variables. It might be discovered that the same combina-
tion of factor settings is best for some output variables, but is not best for all of the
output variables. The mathematical model then allows the team to understand the
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trade-offs that need to be made among the output variables to arrive at parameter
settings that are satisfactory for all of the outputs.

Although it is possible to identify nonlinear effects with a two-level experiment with
center points, a three-level factorial, a central composite, or a Box-Behnken experi-
ment is required to construct a full second-order model for a process whose output
is nonlinear.

The accuracy of the model can be checked by comparing the actual output values
with the predicted output values. Subtracting the predicted output values from the
observed output values gives differences called residuals. When the residuals are
sufficiently small compared to variation in the output, the model will be explaining a
large proportion of the variability in the output and so the prediction model is consid-
ered good.

Plotting the residuals can help indicate if any problems occurred during the experi-
ment. If all went well, the residuals should show no unusual patterns when plotted
against the run order. If, however, the residuals get larger, smaller, show some cycle
or drift, or contain an abnormal spike, the data sheet and experimental log should
be reviewed to see if any unusual events occurred for that particular run. See figure
2.33.

A plot of residuals against predicted output values should show random scatter, with
no significant patterns such as a funnel or curvilinear pattern. A pattern in the
plotted points might indicate the need for nonlinear or interaction terms in the model
or the need for a data transformation of the output values. There are other plots for
residuals that check the validity of the data, analysis and model. (Again, the team
statistician should be consulted.)

Residuals 0

0 2 4 6 8 10 121314 16 18 20 22 24

Time

Figure 2.33
Plot indicates an unusual occurrence between point 12 and point 13 that should be
investigated in the experimental log.

2.3.4.1 Robust Design

As mentioned before, one goal of the analysis phase is to identify those process
settings that improve the average response (output). Improvement may mean hitting
a target, maximizing a response, or minimizing a response. However, in many
cases, not only is it important to identify settings that improve the average response,
it is also important to identify those settings that most consistently improve the
average response.




For example, in an injection-molding process, molds are used to form plastic parts.
Since it is very expensive to change the molds, it is necessary to know how much
the material will shrink during processing. Therefore, not only is it important to find
product design and process settings that minimize part shrinkage, but also to find
those settings that result in the most consistent amount of part shrinkage. Changing
the product design and process settings to achieve a consistent high-quality product
that is insensitive (robust) to sources of variation is called robust design.

Robust design is an important application of designed experiments. It is used in
product design to find designs or conditions that make the product less vulnerable
to changes in the user environment, in the manufacturing environment, or in compo-
nent, subassembly, or material quality.

Robust design is also useful in process design. Even after the desirable process
settings have been established, there is a chance that they may not stay exactly on
target or that nuisance factors might affect the output. With robust design, the
objective is to determine new process settings so that, even though the process
may vary slightly from the new settings or nuisance factors might be present, the
impact on the output is not as severe as it would have been at the old settings.

The concept of robust design is illustrated in figure 2.34. In the diagram, the output
measures from an experiment have been plotted and they fall onto a curve. The flat
region in the curve has a property called robustness. When the process operates at
settings that produce output measures in a flat region, minor changes in the vari-
ables produce very little variation in the output. However, if the process operates at
settings that produce output measures in a steep part of the curve, minor changes
in the variables produce a great deal of variation in the output. A process is said to
be robust against the variation in the design variables if the variables can vary
slightly without excessive variation in the output characteristics. Thus, if the design
variable is difficult or expensive to control, it is preferable to set the variable in the
robust region and use other design variables to obtain an output that is on target.

In this context, the difficult-to-control variable could be any cause of variation,
whether an input factor, a held-constant factor, or a nuisance variable. Clearly
though, to conduct a robust design experiment to discover robust product designs
or robust process regions, it is hecessary to include the sources of variation that the
product or process is to be robust against as input factors in the experiment. This
implies that they will need to be controlled at predetermined settings during the
experiment.

As an example of a robust experimental design, suppose a team agrees that 10
factors affect the output characteristic, and they also agree that one of the factors
cannot be controlled in the production environment. The team decides to conduct
an experiment off-line involving the 10 factors, to determine settings for the nine
controllable variables that minimize the output variation even when the value of the
uncontrollable factor changes. In figure 2.35, an interaction plot shows the output at
two different settings of one controllable variable (supplier) and the uncontrollable
factor (ambient humidity). If the material is from supplier 2, the output changes as
the uncontrollable variable (ambient humidity) changes. If the material is from
supplier 1, the output is consistent even if the ambient humidity changes. The
controllable variable can be set at the level where changes in the uncontrollable
variable have little or no impact on the output. In this example, this means using
material from supplier 1 since the process output is robust to variation in humidity
with material from that supplier. The other variables can be set to bring the output to
target.
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Figure 2.34 Reducing Variation Through Robust Design—

This graph shows the impact of one difficult-to-control variable at two different regions. If
the process operates in region 1, small changes in the variable cause large variation in the
output characteristic. But if the process operates in region 2, small changes in the variable

cause only small variation in the output characteristic. When the process operates in
region 2, it is said to be robust to changes in the difficult-to-control variable.

Material from Supplier 1

Output
variable oiet 2

Low High
Ambient humidity

Figure 2.35 Robust Design ldentified Through an Interaction—

In the diagram above, the effect of ambient humidity (an uncontrollable factor) on the
output is different for the two suppliers (the controllable factor). When the material is from
supplier 1, the output is very stable (as illustrated by the horizontal line). Changes in the
ambient humidity cause little or no variation in the output. However, if the material is from
supplier 2, changes in the ambient humidity significantly affect the output. Using material
from supplier 1 makes the output robust against the ambient humidity. The output will be
consistent in a production environment, even if ambient humidity varies.




2.3.5 Determine Whether the Results Are Acceptable

There are three main reasons why an experiment may not produce acceptable
results (see figure 2.36).

First, some unusual event may have occurred during the experiment. For instance,
the wrong material may have been used for some runs, the test levels of some input
factors may have slipped, a different machine may have been used for part of the
experiment, the measurement process might have been incorrectly calibrated, or
the measurement for a particular output may have been recorded incorrectly. These
kinds of occurrences can introduce additional variation into the results, which may
make it difficult to detect the effects of the design variables, or which may even
make the results invalid. Because unexpected events do occur, prior to the experi-
ment the team should think about things that might go wrong and of ways to reduce
the likelihood of these problems. If some unusual event has occurred during the
experiment that invalidates the results, it may be necessary to redo some or all of
the experimental runs.

Second, it is possible that the experiment was conducted properly but that the
design resolution or the choice of the design was inappropriate. In this case, sup-
plemental runs or possibly a new type of design must be conducted to resolve the
problem.

Finally, it is possible that the team did not identify suitable test values, include all the
important input factors, or measure the appropriate output variables. The team
should repeat the preparation steps. If necessary, additional members should be
included in the team to help identify other relevant factors and conditions that might
influence the experiment results.

2.3.6 Verify New Processing Conditions

If there are no apparent problems and the results are acceptable, then the model can
be used to identify improved operating conditions. New settings may be proposed
based upon predicted values given by the model. The significant factors may now
be called “key process parameters.” The proposed operating values are called
“parameter settings.” Before making permanent improvements, these new settings
must be verified in the production environment. The proposed improvement is reli-
able if the verification runs confirm the predicted value with about the same amount
of variation that was encountered in the replicate runs in the experiment (see figure
2.37).

If the parameter settings cannot be verified, something may have been overlooked
during part of the experiment process. The analysis step should be checked first for
computational errors. If no errors are apparent in the analysis step, the data sheets
and the residuals should be reexamined for unusual occurrences. Another possibility
may be that the runs and their corresponding output measures were mixed up. This
may require a review with those individuals who were present during the experiment,
in addition to checking the data sheets. It is also possible that the model does not
include some important interaction or nonlinear effects, resulting in predictions that
are substantially different from the output of the verification runs. If the problem is not
identified, some portions of the experiment may have to be rerun, additional runs
may be required, or a new experiment planned.

This section has focused on verifying new processing conditions. Clearly, similar
concepts apply to experiments in product design, where the model can be used to
identify improved product design configurations. New design variable settings can be
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Figure 2.36 Are the Results Acceptable?
The results from the analysis are used to check for any errors or inconsistencies that would
inhibit the ability to draw meaningful conclusions.

based on predicted values given by the model. The predictions at the new design
settings should be compared with data from product configured at those settings to
verify the new product design settings.
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Figure 2.37 Verify New Processing Conditions.
It is important to verify the model developed by the experiment data, especially if the best
process conditions were not actually tested during the experiments. The verification runs
do not need to match the predicted runs exactly, but differences between the actual and
the predicted runs should exhibit approximately the same variation as
the replicate runs in the experiment.

2.3.7 Determine Whether Additional Experimentation Is
Warranted

After the experiment has been designed, conducted, analyzed, and process im-
provements verified, there are four business options to consider: (1) the team may
decide to look for additional improvements within the same experiment region (that
is, within the range of design variable settings tested), (2) the team may decide to
look for further improvements outside the original experiment region, (3) the team
may continue the experiment on-line, or (4) the team may be ready to implement D1-9000-1
the improved operating conditions (see figure 2.38). 201
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The first possibility is that, although some small improvements were identified,
additional improvement is still possible within the original region of experimentation.
The team may decide to run more sophisticated experiments, such as a fractional
factorial design with higher resolution, central composite design, or D-optimal
design, to develop a more accurate prediction model.

The second possibility is that the original experiment points to superior operating
conditions outside the original region of experimentation. The mathematical model
can be used to indicate the direction of further testing for improvement. Strategies
known as steepest ascent and response surface methods are very useful in explor-
ing superior operating regions. They involve very few runs and are designed for
rapid improvements with limited data.

The third possibility is that there is no more time for off-line improvement: the ma-
chines, equipment, and raw materials are required to meet the production demands
and cannot be dedicated to another experiment. If a few key process parameters
have been identified, the tool called Evolutionary Operation (EVOP) may be applied.
EVOP is a method for using small on-line experiments to identify improvements
within process specifications.

The fourth possibility is that substantial improvements have occurred. In fact, the
new capability may even exceed the original objective. If this is the case, it may be
best to implement the new operating conditions and focus on different improvement
opportunities.

2.3.8 Implement Improvements

The final step in the experimental process is to make the new improvements a
permanent part of operating procedures (see figure 2.39). The results of the experi-
ment must be documented on the AQS Control Plan in the appropriate columns
under “Process Variation.” Be sure to note in the “DOE?” column that a designed
experiment was conducted to correlate sources of process variation with the key
characteristic.

More importantly, applicable manufacturing plans and procedures must be revised
to incorporate changes to parameter settings and/or controls. Where possible,
control charts should be maintained on the key process parameters to ensure that
they remain in statistical control.

Results from designed experiments should also be recorded in the process data-
base described in D1-9000 section 2.3.13.

With the process improvements gained through Design of Experiments, the capabil-
ity (Cpk) of key characteristics should increase significantly. However, statistical
control and capability for the key characteristic must be confirmed under actual
production conditions.

If, through experimentation, the team concludes that optimization of a process
would require a change to the process parameters/settings of a Boeing specifica-
tion or procedure, Boeing must be contacted and permission granted prior to using
the new settings on Boeing production hardware.
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Figure 2.38 Additional Experiments?

After analysis and verification of the results, the experiment team and management must
determine whether further experimentation is warranted. Assuming the financial benefit is
sufficient, there are several methods to obtain further improvements. The flowchart above

shows some typical optimization strategies.
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Figure 2.39 Implement Improvements—

By controlling key process parameters, end-item product quality can be ensured. Control
charts are used to control these parameters and to detect process changes. A rapid
corrective action system must be in place to recover out-of-control or incapable
processes. When the process is stable, process capability ratios (Cpk) can be determined
using a measure of process variability (+ 3s) and the corresponding engineering
specifications. Once the preceding system is established, only a periodic audit is required
to ensure product quality.




2.4 Summary

This chapter provides an overview and introduction to the technigues associated
with statistical Design of Experiments. Many books have been written on the subject
of Design of Experiments. It is clearly impossible to adequately cover all of the
issues associated with the subject in one brief chapter. The objective of this chapter
has been to communicate something of the essence of Design of Experiments and
to provide enough details so that the reader is aware of this valuable quality im-
provement tool, can appreciate some of the principles and concepts that underpin
the methodology, and can understand the steps involved in planning, conducting,
and analyzing a designed experiment. More extensive exposition of Design of
Experiments, including a detailed description of the construction of some useful
experimental designs and the analysis of the data from designed experiments, can
be found in the references given below.

Throughout the discussion in this chapter we have indicated some of the situations
where it is advisable to seek further statistical support. Although there are impres-
sive benefits from applying Design of Experiments methodology to improve quality,
there are also some risks. A poorly designed experiment can waste considerable
time and money, yield data that are worthless, and lead to incorrect decisions. A
professional statistician, who understands the theory behind Design of Experiments
and has experience in applying the techniques, can provide the advice and statisti-
cal support that will decrease the risks and increase the chances of a successful
experiment. The best time to seek that advice is before, rather than after, running
the experiment.

The benefits of a successful experiment are considerable. Design of Experiments
techniques can be used to identify the key process parameters and their settings
that drive product quality. Design of experiments is also a powerful tool for develop-
ing a new product and improving an existing product design by identifying the
design variables and their settings that impact product quality. The methodology
discussed in this chapter can be used to determine the optimum process settings
and product design variable settings so that a process performance measure or a
key quality characteristic of a product are close to the target (nominal), and the
variability from target is as small as possible. This will substantially improve quality
and ensure end-item conformance with more certainty than end-item inspection.
Design of Experiments is an effective and economical method for improving process
and product quality.

2.5 Suggested Reading

1. G.E.P.Box, W. G. Hunter and J. S. Hunter, Statistics for Experimenters,
New York, John Wiley & Sons Inc., 1978.

2. Coleman & Montgomery “A Systematic Approach to Planning for a
Designed Experiment”, Technometrics, 35, 1-27, (1993) .

3. R.L.Mason, R. F. Gunst, J. L. Hess, Statistical Design and Analysis of
Experiments - with Applications to Engineering and Science, New York,
John Wiley & Sons, 1989.

4. D. C. Montgomery, Design and Analysis of Experiments, = New York, John
Wiley & Sons, 1997.

5. T.P. Ryan, Statistical Methods for Quality Improvement, New York, John
Wiley & Sons, 1989.

6. S. R. Schmidt and R. G. Launsby, Understanding Industrial Designed
Experiments, Air Academy Press, 1994.
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3.0 Glossary of Terms

Accuracy:

The degree of agreement of measurements with the true value of what is
being measured.

Analysis of variance (ANOVA):

A statistical technique used for analyzing data. It subdivides the total varia-
tion in the data into components associated with specific sources of varia-
tion, in order to test if these specific sources contribute significantly to the
variability of the measurements.

Advanced Quality System (AQS)

Process for improving productivity and quality by systematically managing

and reducing variation through process understanding. It includes identify-

ing product and process improvements in research, design, manufacturing,
delivery, and business processes.

Assignable cause:
A special cause of variability for which a reason can be identified.
Attribute data:

Qualitative data that typically show only the number of articles conforming,
and the number failing to conform, to a specified criterion. Examples include
characteristics such as the presence of a required label, installation of all
required fasteners, and acceptability to a specification when measured on a
go-no-go gage. Results are recorded in a simple yes/no fashion. Control
charts for attribute data include p, np, ¢, and u charts.

Average:

The sum of values divided by the number (sample size) of values. The
average is designated by a bar over the symbol for the values being aver-
aged — for example, X is the average of the X values within a sample; X is
the average of sample averages; and p is the average of p’s from all the
samples.

Batch effect:

A periodically occurring source of variation that influences a collection of
measurements taken on a characteristic— commonly present when the
product is produced in lots or batches. An example would be variation tied
to machine setup, which would influence an entire run of parts.

Bias:

In gage variation studies, the difference between the average of repeated
measurements with a single device, and the accepted true value of what is
being measured. An example would be a gage that consistently gives
readings two thousandths low.

Box-whisker chart:

The Box-Whisker chart graphically shows the distribution of measurements
by some classification. Typically, it shows the extreme values (e.g., maxi-
mum and minimum), the middle 50%, and the median or average for each
classification (e.g., part, machine, subgroup).

Brainstorming:

An idea-generating technique that uses group interaction to generate many
ideas in a short time. Criticism and judgment are withheld until after all
ideas have been recorded.




¢ chart:

A control chart for plotting data based on total number of nonconformances
(defects) in a sample.
Capability:

The natural or common-cause variability of a process or characteristic. It
can be determined only after a process or characteristic is in statistical
control. Capability is defined as the six standard deviation (6s) spread in the
process.

Cause and effect diagram:

The result of a structured form of brainstorming that graphically shows the
relationship of causes and subcauses to an identified effect of a problem.

Also called an Ishikawa diagram, or fishbone diagram, because of its shape.

Centerline:
A line on the control chart indicating the average of the items being plotted.
Common cause:

Consists of the combined effect of several sources of variation that are
inherent to a process or the manufacture of a key characteristic. The collec-
tive influence of common-cause variation defines the natural process
variation.

Consensus decision:

A decision made after all aspects of an issue, both positive and negative,
have been communicated so that everyone understands and supports the
decision and the reasons for making it.

Continuous improvement:

It involves small improvements in work processes as a result of ongoing
improvement efforts by everyone. In time, these small improvements add up
to a large improvement. This is the systematic and continuous elimination of
waste of capital, material, and people’s time. Continuous improvement is
accomplished by identifying and solving problems, and by ongoing reduc-
tion of variation.

Control charts:

A family of time-ordered line charts that plot measurements taken from a
process or characteristic. The control of a process is evaluated by compar-
ing the plot points against control limits that are based on plus-or-minus
three standard deviations (x30) from the centerline.

Control limits:

+30 lines on a control chart, representing the maximum extent of variation
in the item being plotted that could reasonably be expected to occur if only
common causes of variation were present. Variation beyond a control limit is
evidence that special causes are affecting the data. Control limits are based
on the natural process variation and are not to be confused with engineer-
ing specification limits.

Control plan:
A form used for documenting relevant AQS information on parts and pro-
cesses. When attached to the manufacturing plan, the AQS Control Plan

can also serve as operator instructions. It is an auditable record and should
be revised as necessary.
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Cp:
The engineering tolerance width divided by the capability, or spread, in the
output of the process. Sometimes referred to as the “process potential”.

Cpk:
A ratio that compares the engineering tolerance width to the capability, or
spread, in the output of the process, taking into account any lack of center-
ing. Sometimes referred to as “process performance.” Larger Cpk values
indicate better process capability.

Dataset:

A named compilation of related data made accessible to a computerized
system.

Defect concentration diagram:

A tool for displaying defects or nonconformities in a part or assembly. A
picture of the part is used, with defects shown by visual indicators.

Defects per unit:
Average number of defects in each unit of product.
Design/build team (DBT or IPT):

A team of representatives from engineering, manufacturing, and any other
group affecting the life cycle of a product, working together to ensure that a
design is economically producible and reliable over a reasonable lifetime.

Design of Experiments (DOE):

The systematic approach of purposefully changing the inputs (parameters,
factors) to a process in order to observe corresponding changes in the
outputs (responses). The purpose of designing an experiment is to provide
an objective, efficient, and economical method of reaching valid and rel-
evant conclusions concerning the effect of process inputs on the process
output.

Embedded software:

Computer instructions and data that are an integral part of a line replace-
able unit (LRU), and which are required by the hardware to perform its
intended function. Embedded software may be located in read-only
memory, and cannot be changed by the normal operation of the LRU.

It is often preloaded at the factory into EPROMSs prior to delivery and instal-
lation of the LRU; however, embedded software may also include loadable
software which is loaded into an installed LRU via a portable software data
loader.

Exponentially Weighted Moving Average (EWMA) control chart:

A weighted, moving-average control chart. More recent sample means are
given more weight than older data when computing the current moving-
average value. This chart facilitates the detection of small shifts in the
process mean. Sometimes called the geometric moving average (GMA)
control chart.

Fishbone diagram:
See cause and effect diagram.




Fit:
How effectively a product can be assembled— affects scrap, rework, inven-
tory, and labor costs.

Flowchart:

A block diagram that shows the input from suppliers, the steps in a work
process, and the output to the customer.

FMEA (Failure Modes and Effects Analysis):

A tool similar to Risk Analysis. FMEA is an analytic process for identifying
problems in the design or manufacture of a product. This tool examines all
the potential failure modes, the potential effects of failure and the causes for
failure. Similar to a Risk Analysis, an FMEA determines a risk number to
prioritize design or process activities for correction or mitigation. See
PFMEA.

Frequency distribution:

The number of times each outcome was observed within a sample drawn
from a population.

Gage R&R:
See gage variation study.
Gage variation study:

A study to determine the degree of variability within a measurement system.
This analysis can be used to calculate the percent of engineering specifica-
tion consumed by measurement error. Also called gage reproducibility and
repeatability (gage R&R). See reproducibility and repeatability.

Goalposting:
A traditional method using specifications to determine acceptability; as-
sumes no financial loss as long as the product falls within specification
limits.

Group chart:

A chart showing multiple measurements from a part on the same chart.
While not a control chart, it can indicate characteristics that consistently run
high or low relative to other characteristics, in either the mean or the range.

Histogram:
A bar chart representing a frequency distribution.
In control:

A characteristic or process whose control chart exhibits only common cause
variation (see Statistical control).

Independence:

Variables are independent if information about any of them provides no
information about the remaining ones.

Individual X and Moving-Range (IX and MR) chart:

A variable control chart plotting individual measures to track the process
average, and moving range to track the process variability. Used for low- or
short-run production situations.
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Inspection:

Any measurement beyond that necessary to maintain statistical process
control. It may include such activities as measuring, examining, or testing
one or more characteristics of a product or service, and comparing these
with specified requirements to determine conformity.

Key characteristic:

A feature whose variation has the greatest impact on the fit, performance,
or service life of the finished product from the perspective of the customer.
Key characteristics are a tool to help decide where to focus limited re-
sources for variation reduction. They are intended to be used for process
improvement purposes. Key characteristics should not be confused with
flight safety or design features which are sometimes called critical charac-
teristics in the aircraft industry. Key characteristics may or may not also be
categorized as critical characteristics.

Key process parameters:

Process parameters that contribute significantly to variation of a key charac-
teristic. These are most effectively determined by the use of designed
experiments.

Kruskal-Wallis test:

A statistical test that detects differences in variability among different parts.
It is useful, for example, in determining whether the parts should be plotted
on the same control chart.

Location chart:

A plot similar to a Run chart or Tier chart, but in which the horizontal axis
represents location rather than time. It is used to depict measurements of a
part characteristic taken at multiple locations.

Loss function:

A term describing short-term and long-term financial loss due to variation;
exact loss is rarely known, but the greater the deviation from nominal, the
greater the loss.

Manufacturing plan:

Supplier developed and maintained manufacturing instructions that provide
sufficient detail to ensure traceability and configuration control, as defined
by engineering, through all phases of fabrication, assembly, processing, and
inspection of products and services.

Mean:

A measure of central tendency for a group of data values; the average of
values in a group of measurements. The mean is the sum of the data val-
ues, and divided by the number of data values.

Measurement:

The act or process of measuring to compare results to requirements—
guantitative estimate of performance.

Moving Average control chart:

A variables control chart in which the plotted points represent the average
of the most recent n sample means from the process, where n is some
preselected number (window size). This chart facilitates the detection of
small shifts in the process mean.




Moving range:

The moving range is the difference between the current measurement and
the immediately preceding one. The moving ranges can be plotted on an
MR control chart. The average of the moving ranges is used to determine
control limits for the 1X and MR charts.

Multiple Characteristics (Multivariate) control chart:

Any of several control charts in which the plotted points represent some
mathematical combination of the measurements of several characteristics
on a part or process. They are used to indicate changes in the characteris-
tics as a group.

np chart:
A control chart for plotting the number of nonconformances in a sample.
Nonconforming units:

Units that do not conform to a specification or other inspection standard;
sometimes called discrepant units. p and np charts are used to analyze
nonconforming units.

Nonconformity:

An occurrence of a condition that does not conform to specifications or
other inspection standards; sometimes called a discrepancy. An individual
nonconforming unit can have the potential for more than one nonconformity
(for example, a door could have several dents and dings). ¢ and u charts are
used to analyze nonconformities.

Normal distribution:

A symmetrical, bell-shaped frequency distribution for variable data. When
measurements have a normal distribution, about 68% of the individual
measurements lie within plus and minus one standard deviation of the
mean, about 95% lie within plus and minus two standard deviations of the
mean, and about 99.7% lie within plus and minus three standard deviations
of the mean. These percentages are the basis for control limits, control
chart analysis, and for many capability decisions.

Sample means are approximately normal, giving basis for using this distri-
bution for computing control limits.

Number defective:

Total number of the defective units found in a sample. Symbol is np.
Number of defects:

Total number of defects found in a sample. Symbol is c.
Out of control:

A process is considered out of control when nonrandom behavior is present
in the process. This is evidenced on a control chart when nonrandom
patterns exist (e.g., cycles, trends, nonrandom fluctuations, and so on).
AQS requires points beyond the statistical control limits to be investigated
for assignable causes.

p chart:

A control chart used to evaluate performance based on the percentage of
product with nonconformances (percent defective).
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Pareto analysis:

Analysis of the frequency of occurrence of various possible concerns. This
is a useful way to decide quality priorities when more than one concern is
present.

Pareto chart;

A type of bar chart showing the frequency of occurrence of various possible
concerns, in descending order from the left to right or top to bottom. The
chart, based on the Pareto principle, helps identify the vital few opportuni-
ties for improvement—those defects appearing most frequently, cause the
most difficulty, or cost the most money.

Pareto principle:

The phenomenon whereby a small number of concerns is usually respon-
sible for most quality problems. The principle is named for Vilfredo Pareto,
an Italian economist who found that a large percentage of wealth was
concentrated in a small proportion of the entire population.

Part family:

A collection of parts that share the same key characteristics and undergo
the same process(es) to create the key characteristic.

Percent tolerance consumed (PTC):

The percentage of the engineering tolerance consumed by measurement
variation; obtained by dividing the gage capability by the tolerance band and
multiplying by 100.
Performance:
Both whether, and how, a product works, including economics of operation.
Population:
The entire group of objects about which information is wanted.
Process:

A set of interrelated work activities that are characterized by a set of spe-
cific inputs and value-added tasks that produce a set of specific outputs.

Process control:

Using data gathered about a process to control the output. This may include
using control charts and the establishment of a feedback loop to prevent the
manufacture of nonconforming products. Process control involves a range of
activities, such as sampling the process product, charting its performance,
determining causes of any problems, and taking corrective actions.

Process control document (PCD):

A document that describes the raw materials, manufacturing processes,
and testing of the supplier’s product to ensure product quality and consis-
tency.

Process Failure Mode and Effects Analysis (PFMEA):

An analytical tool used to (1) document sources of variation in a process,
existing process controls, improvements to be made, continuous improve-
ment data, and (2) conduct risk analysis. The PFMEA performs much the
same task as the risk analysis and AQS Control Plan described in this
document. Suppliers already using and comfortable with PFMEAs may use
this tool in lieu of the risk analysis and AQS Control Plan.




Process parameter:

Controllable factors of a process that are believed to affect its output. Ex-
amples include feed rate, router RPM, and temperature.

Process parameter setting:

The value at which a process parameter is set; for example, 500 RPM
or 450°F

Product:

A result of activities or processes. It may include hardware, services,
processed materials, software, or a combination of these.

Random sample:

A number of units chosen from a lot by a method that gives each unit in the
population an equal chance of being selected.

Range:
The difference between the highest and lowest values in a sample.
Repeatability:

The variation of repeat measurements carried out by one inspector on the
same characteristic, using the same measuring device.

Reproducibility:

The variation in measurement averages when multiple inspectors carry out
repeat measurements, each on the same characteristic, using the same
measuring device.

Resolution:

The ability of a measurement system to adequately differentiate between
values of a measured characteristic to the required degree.

Rework:

Any work done to completely restore nonconformances to specification
compliance.

Risk analysis:

A process used to help select key characteristics from a list of potential key
characteristics. Characteristics for which defects occur frequently, cause
severe problems, and are difficult to detect represent a high risk and are
generally selected as the key characteristics. Risk analysis can also be
used in other situations where items can be rated by two or more criteria.

Sample:
Part of a population selected according to some rule or plan.
Sample size:

The number of units selected as representative of a population. Symbol is n.

Sampling frequency:
The interval between taking samples.
Scatter diagram:

A graphical technique to analyze the relationship between two variables.
Two sets of data are used to plot the graph. Sometimes it is used for predic-
tion and at other times to see if two variables are related.
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Service life:
How long a product works. Service life affects customer operating costs.
Special cause:

A source of variation that is not inherent to the process but can affect its
performance. Examples could be adding the wrong amount of solution to a
chemical tank, or clamping down a part improperly in a fixture. Special
causes can be distinguished from common causes because they generate
patterns on control charts not characteristic of normal variation.

Specification limits:

Engineering requirements for judging acceptability of a particular
characteristic.

Stability:

In gage variation studies, the difference in the average of at least two sets
of measurements obtained with a gage, over time.

Standard deviation:

A measure of the spread (variability) of the process output, or the spread of
a sampling statistic from the process.

Statistical control:

A process is considered to be in statistical control when the only variation in
the process is due to random causes. In other words, when all nonrandom
behavior has been removed, i.e., special causes have been eliminated.

Statistical process control (SPC):

A systematic method of measuring, graphing, tracking, predicting, minimiz-
ing, and managing process variation.

Statistical Tolerancing

A method for assigning tolerances to the interfacing dimensions of the
components of an assembly. It assumes that the stacking dimension on
each component is independently and randomly produced about the de-
sired target. In this case the deviations from target are expected to offset
each other, with the final assembly highly likely to be within tolerance. The
required statistical tolerances on the components can therefore be more
liberal than worst-case tolerances. As a result this approach is less costly
than worst-case tolerances, but requires that statistical control charting and
process capability analysis be performed as described in this document.

Structure-tree diagram:

Graphically represents the hierarchical relationship among a group of
related parts, processes, activities, key characteristics, causes and effects,
people, or most anything else. This tool is often used in lieu of the cause
and effect diagram due to its ease of understanding, flexibility, and readabil-
ity.

Subgroup:
(Also called rational subgroup.) A type of a sample that is collected so that if
there are significant assignable causes, subgroup statistics will show them.
Statistics derived from subgroups are usually plotted on control charts.




Tampering:

Over adjustment. Reacting to responses (e.g., measurements) when no
changes in the process have occurred. Tampering may actually cause more
variation.

Target chart:

A variable control chart similar to an X or IX chart, except that the values
plotted are based on the measurements taken minus a target value (often
nominal). Target charts are particularly useful in situations where similar
parts with different nominal specifications are plotted together, or when
measuring a process with output having differing specifications.

Tier chart:

A plot of all subgroup measurements, in which the points from successive
subgroups are plotted vertically in time-ordered fashion. It is used to display
which subgroups, if any, have samples outside the specification limits, and
to display large changes in the process mean or spread.

u chart:

A control chart for plotting data based on the number of nonconformances
in each unit (defects per unit).

Variable data:

Quantitative measurements taken on a continuous scale. Examples might
be the diameter of a cylinder or the gap between mating parts. Charts used
for variable data include X and R charts, Individual X and Moving-Range
charts, and Target charts.

Variation:

Changes in the values of a measured characteristic. Nonconstancy from
unit to unit in the measured response. Variation is often classified into two
major groups: common cause and special cause.

Waste:
Anything using resources without adding value to the final product.
World class:

Being the best in your industry on enough competitive edges so as to be
able to achieve impressive profits and still beat your competition in the
marketplace.

X-bar and R charts:

Variable control charts plotting X to track the process average and R to
track the range of successive subgroups on separate charts.

X-bar and S chart:

Variable control charts plotting X to track the process average and S to
track the standard deviation of successive subgroups on separate charts.
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Annotated Bibliography

This bibliography is intended to provide additional resources in the advanced topics
covered in this document. The books listed are the primary ones the authors of D1-
9000 have used in the application of quality and other statistical concepts. Itis by
no means an exhaustive list. Certainly many other books and articles can be
advantageously applied in the same subject areas.

* The Boeing Company, D6-55596TN, Characteristics: The First Step to
Advanced Quality, Seattle, The Boeing Co., 1992, 53 pp.

Describes the use of key characteristics in supporting the Boeing strategy of
variation reduction. Covers the selection of key characteristics using loss
functions, historical data and risk analysis, the number of key characteristics
that should be selected, documentation of key characteristics, and the
flowdown of key characteristics from major assemblies to subassemblies
and detail parts. Gives many examples, showing the key characteristic
selection and flowdown for a wide variety of parts and materials. Provides
comprehensive treatment of the subject as a supplement to D1-9000.

» The Boeing Company, D6-55596-01TN, Process Control and Capability: A
Statistical Approach for Defect Reduction and Process Improvement,
Seattle, The Boeing Co., 1991, 15 pp.

Provides the rationale behind the use of statistical process control for
variation reduction and quality improvement. Presents the definitions of
terms and concepts in a clear, easy-to-comprehend style. Presents
formulas for capability analyses in a simple fashion, including the
relationship between capability and process fallout.

* Box, George E.P.,, William G. Hunter, and J. Stuart Hunter, Statistics for Experi-
menters: An Introduction to Design, Data Analysis, and Model Building,
New York, John Wiley & Sons, 1978.

Intended for those who collect and analyze data in physical, engineering
and other sciences. Emphasizes design of experiments according to the
scientific method, stressing proper choice and conduct of experiments,
along with appropriate data analysis. Assumes no previous knowledge of
statistics, and introduces theory only as necessary, using elementary
mathematics. Places emphasis on the science of experimentation, the
development of statistical thinking, and the use of statistical techniques.
Covers topics including statistical independence, random sampling, tests of
significance, measuring the effects of variables, factorial designs, fractional
factorial designs, and associated analyses.

» Brassard, Michael, The Memory Jogger: A Pocket Guide of Tools For Continu-
ous Improvement, Methuen, Mass., GOAL/QPC, 1988.

Contains the philosophy, problem solving methods and graphical techniques
for continuous improvement. Describes such techniques as flowcharts,
check sheets, Pareto diagrams, cause and effect diagrams, run charts,
histograms, scatter diagrams, control charts, and process capability indices.
Includes other helpful tools such as brainstorming, nominal group technique,
force field analysis, pie charts, stratification, bar charts, interrelationship
digraph and multivoting.
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» Chambers, John, William Cleveland, Beat Kleiner, Paul Tukey, Graphical Meth-
ods for Data Analysis, Wadsworth, 1983.

A thorough discussion of graphical procedures. One of the best writeups of
box plots, development and usage.

» Coleman & Montgomery “A Systematic Approach to Planning for a Designed
Experiment”, Technometrics 35, 1-27, (1993).

An excellent discussion of the up front planning needed for a successful
statistically designed experiment.

» Deming, W. Edwards, Out of the Crisis, Cambridge, Mass., MIT Center for
Advanced Engineering Study, 1986.

Deming’s comprehensive treatment on what managers must do to correct
faltering competitiveness in the world marketplace. Presents the 14 Points
for Management, and expands on them in promoting the need for a long-
term commitment to a new management style, new learning, and a new
philosophy. The new management style includes the unshakable
commitment to quality and productivity, coming from the top of the
organization. Stresses principles of training and leadership, the need for
clear operational definitions, and knowledge of common and special causes
of variation for improvement. The way out of the crisis is for managers to
increase the quality, and hence the productivity, of the systems of people
and equipment they manage.

» DeVor, Richard E., Tsong-How Chang, John W. Sutherland, Statistical Quality
Design and Control , Prentice-Hall, 1992

A contemporary approach to the use of statistical thinking and methods for
engineering design and process improvement. It articulates a conceptual
framework for quality design and improvement through the philosophies of
Deming and Taguchi and then builds on this foundation methodologically
with the tools and methods of statistical process control and classical design
of experiments. The book is self-contained in terms of statisitcal methods
background, introducing in a “just-in-time” fashion the statistical
underpinning of the models developed throughout the text. The book makes
extensive use of examples and lengthy case studies drawn from actual
practice to demonstrate the workings of the statistical thinking and methods
that it promotes.

» Devore, Jay, Probability and Statistics for Engineering and the Sciences,
Brooks/Cole, 1995

This is a well written text giving an introduction to probability and statistics
with an emphasis on concepts and methodology as opposed to theory.
Topics include descriptive statistics, probability and probability distributions,
statistics and their sampling distributions, point estimation, confidence
intervals and hypothesis testing based on one or two samples, the analysis
of variance for single- and multi-factor experiments, regression and
correlation, goodness-of-fit tests, non-parametric procedures, and quality
control. The book contains an abundance of examples and exercises, many
of which involve real data extracted from a wide variety of published
sources.




» Duncan, Acheson J., Quality Control and Industrial Statistics (5th ed.),
Homewood, Ill., Richard D. Irwin, 1986.

Presents the basic principles and procedures of statistical process control.
Thoroughly discusses underlying assumptions and theoretical principles
behind each technique. Prepares quality practitioners and industrial
researchers to apply theory to nonstandard situations. Includes the
fundamentals of probability, frequency distributions, sampling, control chart
theory, and applications. Reflects current Federal Government sampling
standards. Knowledge of basic statistics is recommended.

* Freedman, D., R. Pisani, R. Purves, A. Adhikari, Statistics , New York, W. W.
Norton & Company, Inc., 1991.

This excellent text presents various interesting problems and shows how
they are solved using statistical methods. It discusses why the methods
work and what to watch out for when you or others use them. The text stays
away from mathematical notation and explains the concepts and methods in
words, graphics, and tables. It is not a book of statistical formulas. The book
includes all the usual introductory statistical topics.

e Grant, Eugene L., and Richard S. Leavenworth, Statistical Quality Control
(7th ed.), New York, McGraw-Hill, 1996.

Excellent discussion of SPC. Demonstrates techniques that have been used
in many industries to improve product quality and reduce costs. Describes
the most common statistical tools, including both uses and limitations.
Thoroughly explains the primary control charts. Shows sufficient theory for
a working understanding of each subject, supplemented with case studies.
Intended for industrial users, including production and inspection personnel,
engineers, and managers. Previous knowledge of basic statistics is helpful.

 Imai, Masaaki, Kaizen: The Key to Japan’s Competitive Success, New York,
McGraw-Hill, 1986.

Describes Kaizen strategy as “the single most important concept in
Japanese management.” Kaizen means gradual, unending improvement,
doing small things better, and setting and achieving ever higher standards.
It is a process-oriented way of thinking, as opposed to innovation- and
results-oriented thinking. Presents the philosophy as being ingrained in
every facet of Japanese business, including profit planning, policy
deployment, total quality control, customer satisfaction, supplier relations,
just-in-time production, information processing, and problem solving.
Describes 16 specific management practices that can help increase
productivity, lower costs, and improve competiveness without major capital
investment.

* Ishikawa, Kaoru, Guide to Quality Control (2nd rev. ed., edited for clarity ),
New York, Asian Productivity Organization, 1986.

Describes quality control as practiced in Japan. Originally published to
respond to the demand for a book that industrial workers and foremen could
use in quality circles. Describes simplified quality control techniques that
help workers seek out applications in their own work environments. Can be
used in self-study and in training of employees. Uses discussions and
practice problems to cover such topics as data collection methods,
histograms, cause and effect diagrams, check sheets, Pareto diagrams,
control charts, scatter diagrams, and sampling.
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 Juran, J.M., and Frank M. Gryna, eds., Juran’s Quality Control Handbook
(4th ed.), New York, McGraw-Hill (ASQC Quality Press), 1988.

Offers reference materials and problem solving methods that can be used to
improve quality at reduced cost. Provides guidance on such topics as
companywide planning for quality, costs, improvement methods, use of
computers, managing human resources, quality training, quality of services,
marketing, top management’s role, and other topics.

» Kane, Victor E., Defect Prevention: Use of Simple Statistical Tools, New York,
Marcel Dekker, 1989.

Presents practical statistical analysis tools and field-tested strategies for
implementing continuous improvement, Focuses on how to prevent defects
from occurring in industrial processes by controlling them and conducting
effective problem analysis. Provides a thorough development of statistical
process control tools and procedures. Contains many contemporary case
studies; several practical, detailed shop floor procedures; hundreds of
graphical illustrations; and many sample problems.

» Kiemele, M. J., Stephen R. Schmidt, Ronald J. Berdine, Basic Statistics
Air Academy Press, 1997.

Presents statistical concepts and tools from an applied point of view with a
focus on achieving continuous improvement in products and process. It is
intended as a first course in statistics or a reference book. The topics
include the standard statistical topics, but also sections on SPC,
experimental design, and the motivation for using statistical methods. It is
written simply and clearly. This book is not a theoretical text on statistics.

* Mason, R. L., R. F. Gunst, J. L. Hess, Statistical Design and Analysis of Experi-
ments - with Applications to Engineering and Science, New York, John Wiley
& Sons, 1989.

This book stresses the strategy of experimentation, data analysis, and the
interpretation of experimental results. It is written for practicing engineers
and scientists, including those in supervisory positions, who utilize or wish to
utilize statistical approaches to solving problems in an experimental setting.
Although the focus of the book is the design and analysis of experiments,
many other statistical techniques are covered. The emphasis of the book is
on the use of these techniques, not their theoretical underpinnings. It
features numerous examples from actual engineering and scientific studies.

* Montgomery, Douglas C., Introduction to Statistical Quality Control (3rd ed.),
New York, John Wiley & Sons, 1996.

Describes statistical quality control with a strong engineering orientation.
Can be used in training programs for engineers, managers, and quality
technologists. Treats quality assurance in business and manufacturing as a
major business strategy. Contains descriptions of the statistical methods
used in quality assurance, including statistical process control and
acceptance sampling.




» Montgomery, D. C., and Runger, G. C., Applied Statistics and Probability For
Engineers, New York, John Wiley & Sons, 1994.

An introductory text for engineers and scientists. Presents many concepts
and principles of probability and statistics, including basic descriptive
statistics, random variables, probability distributions (discrete and
continuous), point and interval estimation, hypothesis testing, correlation,
regression, SPC, and experimental design (DOE). Being application
oriented, it contains real-world examples.

» Montgomery, D. C., Design and Analysis of Experiments,  New York,
John Wiley & Sons, 1997.

This text presents the concepts, methods and analysis of statistically
designed experiments from an engineering design and manufacturing
perspective. It presents the classical scientific approach to experimentation
along with its application. It includes discussion of the fundamental two level
full and fractional designs as well as more advanced topics including three
level designs, optimization, response surface designs and analysis, nested
and split-plot designs and random effects models. It also includes a
discussion of the Taguchi approach including its positive elements and its
shortcomings. This book contains a fairly comprehensive discussion of the
broad field of experimental design. It is an applied book aimed at engineeris
and scientists. Many real world examples are used.

» Montgomery, D. C., and Runger, G. C., “Gage Capability and Designed Experi-
ments. |. Basic Methods.”  Quality Engineering, Vol. 6, No. 1, American Society
for Quality Control and Marcel Dekker, Inc., 1994.

» Montgomery, D. C., and Runger, G. C., “Gage Capability Analysis and De-
signed Experiments . Il. Experimental Design Models and Variance Compo-
nent Estimation.”  Quality Engineering, Vol. 6, No. 2, American Society for Qual-
ity Control and Marcel Dekker, Inc., 1994.

* Moore, David S., Statistics: Concepts and Contoversies,  4th ed., New York,
W. H. Freeman and Company, 1997

This an excellent, easy reading nonmathematical introduction to statistical
thinking. This is not a book on statistical theory or statistical methods, but is
a book on statistical ideas and statistical reasoning. It shows how statistics
can be used and misused and includes many everyday examples including
the appropriate numerical and graphical technigues. A fundamental notion
that the book expands on is that “the aim of statistics is to provide insight by
means of numbers”.

* Ryan, Thomas P., Statistical Methods for Quality Improvement, New York,
John Wiley & Sons, 1989.

Addresses quality improvement in a contemporary fashion. Presents
complex material using simple heuristics and intuitive reasoning. Topics
include statistical process control, evolutionary operation, multivariate
charts, analysis of means, process capability indices, and design of
experiments. Presents up-to-date information and techniques acquired
through research and industrial applications. Written especially for
practitioners of quality improvement.
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» Schmidt, Stephen R. and Robert G. Launsby, Understanding Industrial De-
signed Experiments, Air Academy Press, 1994.

This book is a practical guide to the application of Design of Experiments
methodology. It bridges the gap between a sophisticated mathematical
approach and the overly simple approach. It is written in a straightforward
manner enabling the reader to implement experimental design methods
without being encumbered with mathematical complexity. Classical DOE
methods such as full and fractional factorials, Plackett-Burman, Box-
Behnken, central composite, nested and mixture designs are presented.
Discussions of certain Taguchi experimentation methods should be read
with caution (see D. C. Montgomery's book on Design and Analysis of
Experiments or his book on Statistical Quality Control for a discussion of the
drawbacks of Taguchi methods, as well as DeVor's book on Statistical
Quality Design and Control).

» Scholtes, Peter, The Team Handbook: How to Use Teams to Improve Quality,
Madison, Wis, Joiner Associates, 1988.

A guide to working in or with quality improvement project teams. Contains
many step-by-step instructions, illustrations, and work sheets for
implementing quality principles. Describes a team project from inception to
completion. Relies heavily in its approach on understanding and application
of data. Includes methods for the formation of groups, using them to plan
and manage projects, and effective conduct of meetings. Beneficial to team
members and leaders, managers, and team advisors.

Scholz, Fritz W., Tolerance Stack Analysis Methods , report ISSTECH-95-030,
The Boeing Company, 1995.

This report describes the various tolerance stacking methods without going
into the theoretical details and derivations behind them. (Those can be
found in Scholz, F.W., Tolerance stack analysis methods, a critical reiview,
ISSTECH-95-021, The Boeing Company.) For each method the
assumptions and the tolerance stacking formulas are given. The user can
then make an informed choice among the available methods.
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Index

A

Affinity diagram 19

Analysis of variance (ANOVA) 283-284 298, 312

AQS Concepts 36

AQS Control Plan 1, 36, 38, 56, 59-63, 98, 122, 195, 203, 214, 292, 299, 304
AQS definition 3-5, 297-298

AQS flow 4,12, 21-22

“as-is” 13, 15, 64, 189

Attribute control chart 29, 99, 151, 155, 159, 164, 298

B

Bar chart 34-35, 185, 301, 304

Basic Quality System (BQS) 3, 36

Batch-to-batch variation 85, 103, 105, 149, 298

Between-batch variation 103-104

Between-part variation 104-105, 175

Box-Whisker chart 1, 69, 78, 80, 81, 87, 93-94, 298

Brainstorming 1, 6, 11, 13, 24-25, 27, 43-44, 56, 252, 255-256, 298
Build process 12

Build tree 226, 230-231, 233

Business processes 3-4, 12, 14-17, 19, 40, 64-65, 67, 117, 298

C

c chart 2,99-100, 159-163, 299
Capability Analysis 2, 6-7, 13, 15, 189-195, 239 (Also see Cpk)
Cause and effect 1, 6-7, 13, 15, 24-25, 27-28, 41, 44, 56, 103, 163, 205, 255, 299, 306,
311 (Also see Design of Experiments)
Check sheet 1, 6, 13, 29, 30-31, 185, 311, 313
Communication 17, 23, 29, 35, 38, 43, 67, 195
Confounding 271-272
Continuous improvement 4, 11-13, 15-16, 20, 39, 189
Control charts 1, 2, 6, 13, 61-62, 68-69, 72, 75-76, 85, 93, 97-184, 239, 299
c chart 2,99-100, 159-163, 299
Exponentially Weighted Moving Average Chart (EWMA) 2, 99-100, 126-129, 300
Hotelling T? chart 2, 99-100, 131-133, 145-149
IX-MR chart 2, 84-85, 94-95, 99-100, 104-106, 117-123, 131, 133-143, 149, 176, 178,
180, 182, 301, 303, 307
Moving-Range (MR) chart (See IX-MR chart)
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